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Abstract: The small sample data in the high-dimensional data space are encountered in 
biological applications such as in gene expression microarrays and proteomics mass 
spectrometry. Due to the fact that such data have characteristics such as high-dimensionality 
and small sample dimension, their classification becomes hard. Many feature selection 
algorithms were developed for the purpose of reducing the dimensionality of this kind of data 
and improving the accuracy of classifiers. In the realization of area discoveries through feature 
sets, the selected feature subsets skip important information in unnecessary feature sets. This 
problem comes into prominence with the feature, in the process of performing the discovery of 
information from the high-dimensional data space. This paper evaluates the proposed ensemble 
gene selection method based on a local feature selection to Artificial Immune Recognition 
algorithms in order to find the optimal biological sequences. The unique feature of this 
study is developing the different type of associated feature groups defined using 
high-dimensional data in order to find important tumor-related genes. The comparative tests 
were performed on the training set and test set separately with using support vector machines 
and k-NN classifiers. 
Keywords: Group Based Learning, Gene Selection, Sequence Classification, Machine 
Learning  

 
Introduction 
The discovery of biomarkers from high-dimensional data is an important research topic in the biomedical field. 
Selecting the most distinctive or critical features for classification is a feature selection problem. Many feature 
selection algorithms were developed for the purpose of reducing the dimensionality of this kind of data and 
improving the accuracy performance of the classifiers. A gene selection framework must be established in order to 
select the most discriminating genes in order to identify biomarkers. 
 
Feature selection is a problem of minimum subset selection from the original feature set for the best accuracy 
estimation. Generally high dimensional feature selection methods can be classified into two categories: Filters and 
Wrappers. For filter methods, evaluation of the feature discriminability depends on only the inherent features of 
the microarray data and subclass information, such as density, correlation, Chi-square statistics, and relief. 
Wrapper methods search for an optimal feature subset by the evaluation function of a learning algorithm for 
assessing the goodness of a feature subset. Filters sometimes used as a pre-processing step for other approaches 
and usually fast.  
 
The idea of the ensemble gene selection framework is converging to original feature groups by creating a set of 
feature groups is based on the principles of group-based learning method. Ensemble gene selection method 
depends on feature group formation and feature selection procedures in order to improve the model. In feature 
grouping stage, different samplings of the original data are generated to create different subset groups.  
Identifying different type of feature groups relying on data-driven or knowledge-driven group formation method. 
The data-driven group formation method, exploits the characteristics of target data and the knowledge-driven 
group formation method is to find group of associated genes or proteins that have coherent expression pattern in 
the same pathway (He, Yu, 2010). Within the scope of this work, data-driven feature group formation used to 
pre-select the different type associated gene subset groups. Each type of associative feature group is improved by 
being optimized with Artificial Immune Recognition Systems and learning is performed at the group level. Within 
the scope of this study, in the feature selection framework the feature groups were taken as a basis. An attempt to 
develop the associated feature groups defined using high-dimensional data based on a local feature selection to 
Artificial Immune Recognition System (LFSAIRS1, LFSAIRS2, Parallel-LFSAIRS1, Parallel -LFSAIRS2).  
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Creating different type associated feature groups from high-dimensional data is mentioned as a associative feature 
groups in the second part of the paper, the Artificial immune recognition systems with proposed ensemble gene 
selection framework is mentioned in the third part, the data set is mentioned in the fourth part, and the comparative 
performance measurements of the optimal biological sequences are mentioned in the fifth part. 
  
Associative Feature Groups   
The idea of converging to original feature groups by creating a set of feature groups is based on the principles of 
group-based learning method. Relational features have a very high correlation in high-dimensional data sets makes 
it possible to use feature groups by being taken as a basis.   
 
In this paper, the first type of the associative feature groups was obtained by the DGF (Dense Group Finder) 
algorithm. The main part of the DGF is the kernel density estimation and iterative mean shift procedure for all 
features. Density-based feature groups were obtained using the kernel density estimation designated in equation 
(1). The h parameter used for the kernel bandwidth refers to the number of nearest neighbors, p refers to the total 
number of features in the data set, fi refers to any feature, and K refers to the kernel function. (Cj+1) was calculated 
to determine the order of sequential locations of the kernel function. (Cj+1) positions the average by shifting it to a 
denser peak point using the other features in the local region determined with h parameter starting from the average 
of a certain fi feature (Loscalzo et al., 2009).  
 

Cj + 1 =
∑ fi K p
i=1  (Cj−fih )

∑  K p
i=1  (Cj−fih )

, j = 1,2, …                   (1) 

 
The second type of the associative feature groups was obtained by the CFG (Correlation-Based Feature Group) 
algorithm. The CFG is a filter-based feature selection method that sorts the feature subset by the correlation-based 
intuitive function. The CFG algorithm examines the usefulness of subset of attributes based on a heuristic 
evaluation function. In choosing a correlation-based feature, each attribute is taken into account in the correlation 
between the attributes, as well as the predictive predicting of the class label. The value of the heuristic evaluation 
function used in the evaluation of the attributes is determined by equation 2. The intuitive usability of a subset of S 
attributes with k attributes is represented by 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, the mean attribute-class correlation is presented by rcf for (f 
ϵ S), and the correlation between the mean attributes is presented by rff parameters.   

                                                                  

   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = k∗rcf 
�k+(k−1)∗rff 

                                   (2) 

 
The third type of the associative feature groups was obtained by the IGFG (Information Gain-Based Feature 
Group) algorithm. This method selects attributes with entropy based scores. The Entropy criterion makes a 
choice with the help of knowledge in the feature. For this reason, the feature is treated as a distribution and its 
entropy is found. The entropy of the ft attribute with M data can be found by equation 3. 

 
𝐸𝐸 =  −∑ (𝑓𝑓𝑚𝑚(𝑚𝑚) log(𝑓𝑓𝑚𝑚(𝑚𝑚))𝑀𝑀

𝑖𝑖=1                                 (3) 
 

Within the scope of this study, an attempt to create feature group sets was made by the DGF, CFG and IGFG 
algorithms. These feature groups obtained based on the ensemble feature selection framework using data 
perturbation. These feature group sets were developed with the meta-dynamics of the Artificial Immune 
Recognition Systems like a single cell in order to find the optimal biological sequences. 
  
Artificial Immune Recognition System 
Artificial Immune Systems are a class of adaptive computer algorithm based on metaphor of the mammalian 
immune system. Application areas of the Artificial Immune Systems are pattern recognition, fault and anomaly 
detection, data mining, classification, robotics, optimization and anomaly detection. Artificial immune recognition 
algorithm is one version of the Artificial Immune System which is specifically designed for the classification 
problems.    
   
Artificial Immune Recognition Systems (AIRS) consist of the stages of initialization, memory cell recognition, 
resource competition and the selection of memory cells. In this approach, an antigen represents a single data 
instance and allocated to the closest matching ARB (antibody) in the pool of ARBs. At the initialization stage, the 
data set is normalized to the range of [0,1]. After normalization, the affinity threshold is calculated by equation 
(4). At the next stage, antigens are presented to the storage pool with antigen training. At the memory cell 
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recognition stage, a stimulation value is assigned to these cells by stimulating the recognition cells in the memory 
pool. Affinity is calculated by equation (5), the stimulation values are calculated by equation (6) and (7).  
 
The recognition cell with the highest stimulation value is calculated by equation (8) then Mcmatch cell is cloned 
and mutated. The number of clones is calculated by equation (9), 

                  𝑎𝑎𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 𝑚𝑚ℎ𝑚𝑚𝑚𝑚𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ ∑ �𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎(agi,agj)
𝑎𝑎(𝑎𝑎+1)

2�
�𝑎𝑎

𝑗𝑗=𝑗𝑗+1
𝑎𝑎
𝑖𝑖=1                       (4) 

        a𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(agi, agj) = 1 − Euclidean distance(agi, agj)                        (5) 
 

                          𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚ulation = 1 − affinity                                                   (6) 
              𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑜𝑜𝑎𝑎𝑚𝑚𝑚𝑚𝑜𝑜𝑎𝑎(mc, ag) =

 � affinity(mc, ag)   if mc. class = ag. class
    1− affinity         otherwise                                     (7) 

 
                            𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚(𝐬𝐬𝐬𝐬𝐬𝐬𝐚𝐚𝐬𝐬𝐬𝐬𝐚𝐚𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝐚𝐚𝐦𝐦, 𝐚𝐚𝐚𝐚))                                   (8)             

                               𝒏𝒏𝒏𝒏𝑴𝑴𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝐬𝐬𝐬𝐬𝐬𝐬𝐚𝐚𝐬𝐬𝐬𝐬𝐚𝐚𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ 𝐦𝐦𝐬𝐬𝐬𝐬𝐬𝐬𝐚𝐚𝐬𝐬𝐜𝐜𝐚𝐚𝐬𝐬𝐜𝐜                                       (9) 

At the resource competition stage, when mutated clones are added to the ARB (artificial recognition spheres, 
antibody) pool, competition begins for the time source. According to the stimulation value, limited resource 
assignment to the ARB pool is made according to the stimulation value. ARBs without enough resources are 
removed from the system. When the stop criterion is achieved, the process ends, and the ARB with the highest 
stimulation value is selected as the candidate memory cell. At the selection of memory cells stage dynamically 
and evolving developed Memory cell pool in the algorithm is used for the classification process (Brownlee, 
2005). 
 
The basic steps of the AIRS1 algorithm, the first version of artificial immune recognition systems, and the AIRS2 
algorithm, the second version, are same. The main difference between them is that the ARB pool is used as a 
permanent resource in the AIRS1 algorithm; it is used as a temporary resource in the AIRS2 algorithm. In the case 
of being used as a permanent resource, ARBs remaining from previous steps cause the algorithm to spend more 
time by being involved in the competition for limited resources. Therefore, the complexity of the AIRS2 algorithm 
is less. While AIRS1 uses the mutation parameter that can be defined by the user, AIRS2 uses the concept of 
somatic hyper mutation where the mutation ratio of a clone is proportional to the affinity (Wang, Chen, Adrian, 
2014). While the classes of clones may change after the mutation process in the AIRS1 algorithm, classes are not 
allowed to change in the AIRS2 algorithm. Parallel AIRS is work into exploiting the parallelism, which caused 
some loss in the data reduction benefits of artificial immune recognition system.  The versions of the Parallel 
AIRS are Parallel AIRS 1 and Parallel AIRS2. Which are modeled based on the distributed nature and parallel 
processing feature of the mammalian immune system (Brownlee, 2005). At first, each part of the training data set 
is assigned to np number of processes. Thus, it is ensured that np number of the memory pool is created by running 
the AIRS algorithm on each process. As a result, the memory pools obtained are merged. 
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A. The proposed ensemble gene selection Framework  

 
Figure 1.Proposed ensemble gene selection framework 

B.  Standard Artificial Immune Recognition Systems:  
Input:  InputPatterns, clone rate, mutationrate, stimthresh, resourcemax, affinitythresh 
    Output: cell memor  ←eInitializeMemoryPool(InputPatterns)   
          For (InputPatterni ∈ InputPatterns)  
              Stimulate (cellsmemory, InputPatterns)  
  cellbest esGetMostStimulatedby1NN (InputPatterni, cellsmemory)  
        If cellclass,best ≠eInputPatternclass,i            
            Then cellmemory  moCreateNewMemoryCell (InputPatterni )     
    Else  clonenum  ← cellsstim, best x clonerate x mutationrate 
              cellsclones ←lcellsbest 
               For (i to clonenum )  
     cellsclone ←lCloneAndMutate (cellsbest)  
      End  
       While (AverageStimulation (cellsclones ) ≤, stimthresh  
                   For (celli ∈ cellsclones)  
                    cellsclones loCloneAndMutate (cellsi) 
                   End   
                Stimulate (cellsclones, InputPatterns) 
                ReducePoolToMaximumResources (cellsclones, resourcemax) 
      End 
       cellsc elGetMostStimulated (InputPatterni, cellsclones)  
       If (cellsstim , c > cellsstim , best) 
       Then  
         cellsmemory ←ecellsc  

         If (Affinity(cellsc , cell best) ≤ affinitythresh 
         Then DeleteCell (cellsbest , cell memory)   
         End 
     End 
       End  
     End  
     Return (cell memory) 

 
The Pseudo code of the standard AIRS is represented (Wang et al, 2014). 
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C. Local Feature Selection to Artificial Immune Recognition Systems: LFSAIRS 

1. The initial set of feature group sets are created based on associative group formation algorithm. 
2. Do for each Antigen (Ag) until training process is completed:  

2.1.  Calculating  fitness value of the each feature set is calculated by taking into account only  
best matching cell   

2.2.  Until termination do :  
2.3.  The highest fitness value of the feature set is selected as a best feature set 
2.4.  Generation of  l clones of the best feature set  
2.5.  Mutation of the each  clone 
2.6.  Calculating  fitness of the each clone by taking into account only best candidate cell 
2.7.  Set the highest fitness value of the feature set as a candidate optimum feature subset  
2.8.  If best candidate cell is sufficient calculate the optimum subset then go step 3. else go 2.3  

3. After memory cell replacement stage, set the optimum subset of attributes as the subset of the new 
attribute. If training process is completed go to Step 4, else go to step 2. 

4. Selection of the best optimized feature set  
5. Classification of the best optimized feature sets based on test set 

 
Data Sets   
The most common six microarray data sets were used in this study. Table 1 includes information on the genes, 
samples and class numbers contained in the data sets used in this study (Loscalzo et al, 2008). 
 

Table 1: Microarray Data set   
 

Dataset Gene  Sample Class 
Colon 2000 62 2 

Lungstd 5000 181 2 
Prostate 6034 102 2 
SRBCT 2308 63 4 

Lymphoma 4026 62 3 
Leukemia 7129 72 2 

 

The goal of this work is identifying predictive genes for sequence classification at the group level using Artifical 
Immune Recognition Systems. Experimentally obtained performance values were achieved by dividing the data 
sets as 70% training and 30% test set. The proposed ensemble gene selection framework is applied only on 
training set. The goal of the designed framework is to select optimal biological sequences only on the training set 
in order to avoid over-fitting and selection bias problems. Therefore, the test set independent of the gene selection 
process. Within the scope of this work, t is the number of bootstraps. Bootstrap was applied on the training data 
set in order to ensure the resistance of training samples against variations. Then n is a number of the selected 
feature groups, which are created by DFG, CFG and IGFG algorithms. These group feature selection algorithms 
are separately running on the each of the bootstrap data sets. We set the t and n parameters respectively to 10 and 
10 for all algorithms within the scope this paper. The number of features contained in the feature groups obtained 
at the end of the each group feature selection algorithm varies to for each data set. Learning was performed at the 
group level by improving the feature groups presented to the LFSAIRS1, LFSAIRS2, Parallel-LFSAIRS1 and 
Parallel-LFSAIRS2 like a single cell. Selecting an informative gene subset obtained by classification ability of a 
gene subset. The fitness function of each candidate solution was calculated according to the KNN classifier 
accuracy performance. WEKA was used to obtain classifying accuracies. For all algorithms, the classifying 
accuracy of the optimal candidate solution obtained at the end of each run with using the test data set with 10 
cross-fold validations. The performance values added to the results were calculated by taking the average of the 
number of runs. Moreover, to assessment of the discrimination of more important genes is measured by its 
occurrence frequency of gen subset formation.  
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Each of the feature groups represents a candidate solution and the presence of the related feature in a feature 
group was encoded with 1 while the absence of it was encoded with 0. In this study, the affinity threshold value, 
clonal ratio, mutation ratio, np, total source, stimulating value, hypermutation ratio, run number and iteration 
number parameters of the Artificial Immune Recognition Systems took the values of 0.1, 10, 0.15,2, 150, 0.9, 2.0, 
30 and 50, respectively.  

Performance Results and Discussions 
Within the scope of this study, it was focused on the problem of identifying predictive genes for sequence 
classification in order to find important tumor-related genes. 
 

Table 2: Representative gene subsets obtained by LFSAIRS1 and LFSPAIRS1 based on Associative feature 
groups  

 
       LFSAIRS1                   SVM         KNN   

               

       LFS PAIRS1            SVM          KNN 

                 

Data Set Group 

Type 

No  

Optimal Gene Subsets 

10 CV % on 10 CV %  on  

Optimal Gene Subsets 

10 CV %  on 

 

10 CV %  on 

 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

 

 

Colon 

 

 

 

DFG 1 {T63133,T57630} 63.2 69.2 73.4 92.3 {T47377,H55759,D15057, 

H77536} 

67.3 69.2 73.4 61.5 

2 {T53889,M22632,R83349,U10117,X14830} 61.2 69.2 73.4 61.5 {M83751, M27903} 63.2 69.2 59.1 53.8 

CFG 1 {L35545,H79349} 63.2 61.5 57.1 69.2 {U25265,T47584,X02750} 63.2 69.2 63.2 64.6 

2 {T52003,L35249,L11370} 63.2 61.5 63.2 61.5 {H22579,X59871} 73.4 76.9 79.1 77.9 

IGFG 1 {H55759,M83254,D15057} 63.2 69.2 69.1 76.9 {R38513,H29293,T67905, U18934} 63.2 69.2 65.3 61.5 

2 {T55558,R41561, M87434} 71.4 69.2 65.3 69.2 {R60217, J00277} 63.2 69.2 67.8 84.6 

Lungstd DFG 1 {32952_AT, 32980_F_AT} 86.8 88.8 95.2 88.2 {35052_R_AT, 35053_AT, 
35064_AT} 

98.6 92.2 96.5 97.2 

2 {33052_AT, 33078_AT, 33087_S_AT} 95.8 88.8 96.5 92.8 {35922_AT, 35932_AT, 36232_AT} 97.2 91.6 96.5 88.8 

CFG 1 {33270_I_AT, 33306_AT} 82 86.1 74.4 77.7 {32704_AT, 33270_I_AT, 
33306_AT} 

82 86.1 78.6 86.1 

 2 {40401_AT, 40686_AT, 40700_AT} 82 88.8 80 91.6 {36370_AT, 36411_S_AT} 82 86.1 80.6 88.8 

 IGFG 1 {33301_G_AT, 33307_AT, 33304_AT} 82 86.1 78.6 91.6 {AFFX-THRX-5_AT, 31439_F_AT, 
31447_AT, 31477_AT} 

84.8 86.1 82 88.8 

 2 {32702_AT, 32711_G_AT, 32716_AT} 82 86.1 78.6 92.4 {36720_AT, 36806_AT} 82 86.1 76.5 77.7 

 DFG 1 {32950_AT, 33469_R_AT} 80.2 71.4 71.6 71.4 {33973_AT, 34020_AT} 74 57.6 69.1 57.1 

Prostate CFG 1 {32376_AT, 32884_AT} 51.8 66.6 53.0 61.9 {41012_R_AT, 41017_AT, 
41023_AT} 

56.7 55 59.5 52.8 

 IGFG 1 {38933_AT, 38953_AT} 
 

49.3 47.6 76.5 71.4 {33958_AT, 33959_AT} 61.7 57.6 59.2 52.3 

 2 {34930_AT, 34931_AT, 34934_AT} 42.8 46.9 60.4 71.4 {34930_AT, 34932_AT, 34934_AT, 
37469_AT, 37470_AT, 37471_AT} 

 

70.3 57.4 59.2 52.3 

 

SRBCT 

DFG 1 {GENE2125, GENE2142, GENE2144, 
GENE2190, GENE2197} 

66 63.8 68 84.6 {GENE1802, GENE1820} 68 63.8 66 69.2 

 CFG 1 {GENE1113, GENE1114, GENE1115, 
GENE1679, GENE1680} 

60 63.8 38 69.2 {GENE971, GENE990, GENE1709, 
GENE1711} 

69 68.4 68 69.2 

 IGFG 1 {GENE1007, GENE1008, GENE1009, 
GENE2305, GENE2306} 

62 68.4 68 56.1 {GENE773, GENE774, GENE842, 
GENE843, GENE844} 

64 38.4 56 61.5 

Lymphoma DFG 1 {GENE654X, GENE627X, GENE659X} 81.6 76.9 93.8 84.6 {GENE3142X, GENE3096X} 
 

65.5 76.9 77.5 84.6 

2 {GENE579X, GENE585X} 81.6 76.9 93.8 61.5 {GENE770X, GENE761X, 
GENE507X} 

 

83.6 84.6 81.6 92.3 

CFG 1 {GENE2559X, GENE1194X} 65.3 76.9 67.3 61.5 {GENE58X, GENE1094X, GENE40X} 65.3 76.9 57.1 69.2 

IGFG 1 {GENE2740X, GENE2741X} 65.3 76.9 59.1 69.2 {GENE3145X, GENE3105X} 65.3 76.9 57.1 61.5 
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Leukemia DFG 1 {M24748_CDS2_S_AT, M31211_S_AT} 85.9 86.6 78.9 86.6 {M32639_AT, M34192_AT} 61.4 86.6 66.6 73.3 

2 {M96740_AT, S46622_AT, S69232_AT} 85.9 86.6 73.6 86.6 {X04391_AT, X04707_AT} 70.1 86.6 73.6 80 

CFG 1 {M19722_AT, M19961_AT} 59.6 86.6 63.1 86.6 {AFFX-PHEX-M_AT, 
AFFX-HUMGAPDH/M33197_3_AT} 

59.6 86.6 63.1 73.3 

2 {U40622_AT, U40714_AT} 77.8 86.6 66.6 86.6 {X04327_AT, X07948_AT, 
X12433_AT} 

61.4 86.6 56.1 73.3 

IGFG 1 {D87002_CDS2_AT,HG2846-HT2983_AT} 59.6 86.6 54.3 73.3 {U61263_AT, U62531_AT, 
U63717_AT} 

63.1 86.6 57.8 80 

 
Table 3: Representative gene subsets obtained by LFSAIRS2 and LFSPAIRS2 based on Associative feature 

groups  
 

       LFSAIRS2            SVM         KNN   

               

        LFSPAIRS2          SVM            KNN                

Data Set Group 

Type 

No  

Optimal Gene Subsets 

10 CV % on 10 CV %  on  

Optimal Gene Subsets 

10 CV %  on 10 CV %  on 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

 

 

 

 

 

Colon  

  

 

DFG 

 

1 {T99498, X15183} 69.3 69.2 67.3 53.8 {U37673,H51015,R54422, 

R46502} 

69.3 61.5 73.6 61.5 

2 {T63539,T93284,U29607} 69.3 69.2 65.3 69.2 {L08069, R93337, T89175} 67.3 61.5 65.3 69.2 

 

CFG 

1 {U25265, T47584, R39130} 63.2 69.2 48.9 61.5 {R21901, R39531, T92736, 

X14830} 

63.2 69.2 59.1 46.1 

2 {M37510, L13738} 63.2 69.2 65.3 46.1 {V00523, T72889} 63.2 69.2 48.9 84.6 

IGFG 1 {D00763,X66839} 63.2 69.2 57.1 69.2 {R09479, M73481,H79349, 

T41207, T54364, R56052} 

63.2 69.2 59.1 69.2 

  

 Lungstd 

DFG 1 {34171_AT} 91.7 86.1 86.3 91.6 {33969_AT, 34028_AT} 89.6 83.3 87.5 83.3 

CFG 1 {39640_AT,41037_AT, 
2047_AT} 

82 86.1 84.8 91.6 {31806_AT, 31840_AT} 90.3 86.1 91 86.1 

 IGFG 1 {33324_S_AT,33334_AT} 82 86.1 81.3 80.5 {31980_AT, 32010_AT, 32383_AT, 
32396_F_AT} 

82.7 86.1 80 83.3 

 2 {33336_AT, 33337_AT, 
33698_AT} 

83.4 86.1 88.9 86.1 {40719_AT, 40721_G_AT} 82 88.8 83.4 91.6 

 DFG 1 {34718_AT,35172_AT} 76.5 61.9 62.9 47.6 {37822_AT, 37823_AT, 38156_AT, 
38170_AT} 

90 72.3 86.4 71.4 

2 {41405_AT, 41439_AT, 
41616_AT} 

66.6 67.2 61.7 47.6 {40727_AT, 41016_AT, 
41032_AT} 

88.8 76.1 83.9 71.4 

Prostate CFG 1 {33714_AT, 33809_AT, 
34764_AT} 

65.4 42.8 58 47.6 {32663_AT, 32735_AT} 53 52.3 66.6 66.6 

 IGFG 1 {36768_AT, 36769_AT, 
36770_AT} 

61.7 57.1 62.9 57.1 {36763_AT, 36764_AT, 36766_AT, 
37051_AT, 37054_AT, 37056_AT} 

60.4 52.3 60.4 66.6 

 DFG 1 {GENE403, GENE415, 
GENE2048, GENE2081} 

58 61.5 72 61.5 {GENE234, GENE253, GENE274} 54 53.8 64 69.2 

SRBCT CFG 1 {GENE1709, GENE1711} 62 58.4 62 66.1 {GENE1639, GENE1676, 
GENE1680} 

61.3 58.9 63.2 72.4 

 IGFG 1 {GENE767, GENE768, 
GENE769} 

62 58.4 62 63 {GENE864, GENE865} 62 54.6 61.3 60.2 

Lymphoma DFG 1 {GENE1764X, GENE3594X} 77.5 76.9 77.5 84.6 {GENE2226X, GENE2902X} 81.6 76.9 77.5 92.3 

2 {GENE2368X, GENE2369X, 
GENE2370X, GENE2109X, 

GENE2108X} 

93.8 76.9 89.7 76.9 {GENE2774X,GENE704X, 
GENE699X} 

83.6 76.9 81.6 76.9 

CFG 1 {GENE1910X, GENE2060X, 
GENE330X, GENE235X} 

65.3 76.9 63.2 53.8 {GENE1241X, GENE891X} 65.3 76.9 55.1 61.5 

2 {GENE1269X, GENE1194X} 63.2 76.9 69.2 53.8 {GENE2598X,GENE2616X, 
GENE2010X} 

65.3 76.9 61.2 69.2 

IGFG 1 {GENE2648X,GENE2647X, 
GENE2684X} 

65.3 76.9 55.1 61.5 {GENE526X, GENE527X} 71.4 76.0 85.7 84.6 

Leukemia DFG 1 {M32639_AT, M34192_AT, 
U40282_AT, U41387_AT} 

82.4 86.6 73.3 77.1 {M72885_RNA1_S_AT, 
X58528_S_AT} 

82.4 86.6 77.1 86.6 

CFG 1 {M22382_AT, M23533_AT, 
X17620_AT, X56465_AT} 

76.6 86.6 71.9 86.6 {D50855_S_AT, Y10807_S_AT} 74.9 86.6 76.6 86.6 

IGFG 1 {U83117_AT, X16546_AT, 
X78712_AT} 

59.6 86.6 61.4 73.3 {M17446_S_AT, U50327_S_AT} 61.4 86.6 59.6 73.3 
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The average classifier accuracy on the training set and test set separately with using support vector machines and 
k-NN classifier shown in Table 2 and 3. For Colon data set, 2-gene subsets {T63133, T57630} with 73.4% 
training accuracy has 92.3% prediction accuracy with KNN classifier based DFG for LFSAIRS1. 2-gene subsets 
{H22579, X59871} with 73.4% training accuracy has 76.9% prediction accuracy with SVM classifier and 79.1% 
training accuracy has 77.9% prediction accuracy with KNN classifier based CFG for LFSPAIRS1. For Lungstd 
data set, 3-gene subsets {33052_at, 33078_at, 33087_s_at} with 95.8% training accuracy has 88.8% prediction 
accuracy with SVM classifier and 96.5% training accuracy has 92.8% prediction accuracy with KNN classifier 
based DFG for LFSAIRS1. 3-gene subsets {35052_r_at, 35053_at, 35064_at} with 98.6% training accuracy has 
92.2% prediction accuracy with SVM classifier and 96.5% training accuracy has 97.2% prediction accuracy with 
KNN classifier based DFG for LFSPAIRS1. 1-gene subset {34171_at} with 91.7% training accuracy has 86.1% 
prediction accuracy with SVM classifier and 86.3% training accuracy has 91.6% prediction accuracy with KNN 
classifier based DFG for LFSAIRS2. 2-gene subset {31806_at, 31840_at} with 90.3% training accuracy has 
86.1% prediction accuracy with SVM classifier and 91% training accuracy has 86.1% prediction accuracy with 
KNN classifier based CFG for LFSPAIRS2. For Prostate data set, 4-gene subsets {37822_at, 37823_at, 
38156_at, 38170_at} with 90% training accuracy has 72.3% prediction accuracy with SVM classifier and 86.4% 
training accuracy has 71.4% prediction accuracy with KNN classifier based DFG for LFSPAIRS2. 3-gene 
subsets {40727_at, 41016_at, 41032_at} with 88.8% training accuracy has 76.1% prediction accuracy with SVM 
classifier and 83.9% training accuracy has 71.4% prediction accuracy with KNN classifier based DFG for 
LFSPAIRS2. For SRBCT data set, 5-gene subsets {GENE2125, GENE2142, GENE2144, GENE2190, 
GENE2197} with 66% training accuracy has 63.8% prediction accuracy with SVM classifier and 68% training 
accuracy has 84.6% prediction accuracy with KNN classifier based DFG for LFSAIRS1. 4-gene subsets 
{GENE971, GENE990, GENE1709, GENE1711} with 69% training accuracy has 68.4% prediction accuracy 
with SVM classifier and 68% training accuracy has 69.2% prediction accuracy with KNN classifier based CFG 
for LFSPAIRS1. 4-gene subsets {GENE403, GENE415, GENE2048, GENE2081} with 58% training accuracy 
has 61.5% prediction accuracy with SVM classifier and 72% training accuracy has %61.5 prediction accuracy 
with KNN classifier based DFG for LFSAIRS2. 3-gene subsets {GENE1639, GENE1676, GENE1680} with 
61.3% training accuracy has 58.9% prediction accuracy with SVM classifier and 63.2% training accuracy has 
72.4% prediction accuracy with KNN classifier based CFG for LFSPAIRS2. For Lymphoma data set, 3-gene 
subsets {GENE654X, GENE627X, GENE659X} with 81.6% training accuracy has 76.9% prediction accuracy 
with SVM classifier and 93.8% training accuracy has 84.6% prediction accuracy with KNN classifier based DFG 
for LFSAIRS1. 3-gene subsets {GENE770X, GENE761X, GENE507X} with 83.6% training accuracy has 
84.6% prediction accuracy with SVM classifier and 81.6% training accuracy has 92.3% prediction accuracy with 
KNN classifier based DFG for LFSPAIRS1. 2-gene subsets {GENE1764X, GENE3594X} with 77.5% training 
accuracy has 76.9% prediction accuracy with SVM classifier and 77.5% training accuracy has 84.6% prediction 
accuracy with KNN classifier based DFG for LFSAIRS2. 5-gene subsets {GENE2368X, GENE2369X, 
GENE2370X, GENE2109X, GENE2108X} with 93.8% training accuracy has 76.9% prediction accuracy with 
SVM classifier and 89.7% training accuracy has 76.9% prediction accuracy with KNN classifier based DFG for 
LFSAIRS2. 2-gene subsets {GENE2226X, GENE2902X} with 81.6% training accuracy has 76.9% prediction 
accuracy with SVM classifier and 77.5% training accuracy has 92.3% prediction accuracy with KNN classifier 
based DFG for LFSPAIRS2. 3-gene subsets {GENE2774X,GENE704X, GENE699X}with 83.6% training 
accuracy has 76.9% prediction accuracy with SVM classifier and 81.6% training accuracy has 76.9% prediction 
accuracy with KNN classifier based DFG for LFSPAIRS2. 2-gene subsets {GENE526X, GENE527X} with 
71.4% training accuracy has 76% prediction accuracy with SVM classifier and 85.7% training accuracy has 
84.6% prediction accuracy with KNN classifier based IGFG for LFSPAIRS2. For Leukemia data set, 2-gene 
subsets {M24748_cds2_s_at, M31211_s_at} with 85.9% training accuracy has 86.6% prediction accuracy with 
SVM classifier and 78.9% training accuracy has 86.6%prediction accuracy with KNN classifier based DFG for 
LFSAIRS1. 3-gene subsets {M96740_at, S46622_at, S69232_at} with 85.9% training accuracy has 86.6% 
prediction accuracy with SVM classifier and 73.6% training accuracy has 86.6% prediction accuracy with KNN 
classifier based DFG for LFSAIRS1. 2-gene subsets {U40622_at, U40714_at} with 77.8% training accuracy has 
86.6% prediction accuracy with SVM classifier and 66.6% training accuracy has 86.6% prediction accuracy with 
KNN classifier based CFG for LFSAIRS1. 2-gene subsets {X04391_at, X04707_at} with 70.1% training 
accuracy has 86.6% prediction accuracy with SVM classifier and 73.6% training accuracy has 80% prediction 
accuracy with KNN classifier based DFG for LFSPAIRS1. 4-gene subsets {M32639_at, M34192_at, U40282_at, 
U41387_at} with 82.4% training accuracy has 86.6% prediction accuracy with SVM classifier and 73.3% 
training accuracy has 77.1% prediction accuracy with KNN classifier based DFG for LFSAIRS2. 4-gene subsets 
{M22382_at, M23533_at, X17620_at, X56465_at} with 76.6% training accuracy has 86.6% prediction accuracy 
with SVM classifier and 71.9% training accuracy has 86.6% prediction accuracy with KNN classifier based CFG 
for LFSAIRS2. 2-gene subsets {M72885_rna1_s_at, X58528_s_at} with 82.4% training accuracy has 86.6% 
prediction accuracy with SVM classifier and 77.1% training accuracy has 86.6% prediction accuracy with KNN 
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classifier based DFG for LFSPAIRS2. 2-gene subsets {D50855_s_at, Y10807_s_at} with 74.9% training 
accuracy has 86.6% prediction accuracy with SVM classifier and 76.6% training accuracy has 86.6% prediction 
accuracy with KNN classifier based CFG for LFSPAIRS2. 
 
  
Conclusion 
Conclusion 

In this paper, we proposed an ensemble gene selection framework to select informative gene subsets. The 
informative gene subsets obtained from the different type of the associative feature groups mine many 
tumor-related genes. Based on the obtained optimal gene subsets, we aim to find reliable accuracy on the 
training set and test set separately. The significance of a gene subset is measured by its frequency occurrence.  
Each type of the associative feature groups obtained by group-based learning was presented as a candidate 
solution to Artificial Immune Recognition Systems in order to improve with its meta-dynamics. The presented 
framework makes it possible to obtain more robust tumor-related genes. The prediction accuracies obtained by 
SVM and KNN classifiers. The classifier results obtained were compared with six commonly used microarray 
data sets.  
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