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Abstract: Air pollution is a continuing environmental problem in many part of world which 
affects welfare adversely. Air pollution monitoring data can thus be used to forecast 
concentrations of air pollutants for short-term using time series and artificial intelligence 
approaches. In this paper, time series modelling techniques, auto regressive integrated moving 
average model and another type of it with exogenous variables (ARIMA and ARIMAX), and 
artificial neural networks (ANNs) have been comparatively used to model particulate air 
pollution (PM10) for predicting one-hour ahead concentration of particles in the air. An hourly 
based data for the years 2015-2016 was composed with including meteorological factors and 
air particulate concentration. The models were structured with inputting external parameters to 
simulate air pollution better. ARIMAX(3,1,2) model with R2 of 0.667 and ANN(5-13-1) model 
with R2 of 0.857 produced reasonable predictions over hourly dataset. The best fitting model 
among these models have been chosen in further tests in the prediction of one-hour ahead PM10 
concentrations. 
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Introduction 
Air pollution problem due to particulate matter (PM) is caused by a mixture of organic and inorganic particles 
which are solid and liquid phase spreading out from variable sources (WHO, 2006; Sfetsos and Vlachogiannis, 
2010.) These particles with an aerodynamic diameter less than or equal to 10 µm, namely PM10, arise in the 
atmosphere mainly from the fuel combustion (Aneja et al., 2001; Kampa, M. and Castanas, 2008; Vahlsing and 
Smith, 2012). The highest PM10 levels are associated to stable meteorological conditions with thermal inversion 
in urban and industrial areas. Epidemiological studies showed a close relationship between outdoor particulate 
matter concentration and increased mortality and morbidity (Shang et al., 2013; Pope and Dockery, 2006). High 
levels of these pollutants can be harmful for goods, and also decrease visibility. The air quality standards are thus 
set for PM10, declaring hourly, daily and annual limits. According to EU standards for PM10, the annual average 
limit value of 40 μg.m-3 and 24-h limit value is declared as 50 μg.m-3, and also the limit values should not be 
exceeded by the specified number of times in a year (EC, 2008). 
 
Elevated levels of air pollutants in the air may cause acute or chronic health effects, and even cause premature 
deaths in the elderly people. The air quality forecasting studies is an important research topic in air pollution 
science for public health. Many functional alert systems were employed by utilizing statistical and hybrid models, 
to take precautions before and during air pollution episodes. In this scope, long-term or short-term air pollution 
forecasting models have been used as an aid for air quality management. Time series models, artificial neural 
networks (ANNs), multiple linear regression (MLR) and hybrid models are mostly preferred approaches in air 
quality forecasting researches (Schlink et al., 2003; Niska et al., 2004; Perez and Reyes, 2000). With nonlinear 
simulation and learning abilities, ANNs, are powerful tools for regression and pattern recognition problems. A 
real-life problem such as short-term air pollution prediction, covering complex nonlinear relations with 
meteorological factors, can be handled by ANN models very well. ANNs consist of neurons that are interrelated 
connections artificial processing units and they can process information by error minimization within a finite 
computation loop. ANNs can thus be trained to learn a complex relationship between two or more variables 
recorded in training datasets. Among the available ANNs, the feedforward error backpropagation neural networks 
are the most employed ANN types, of which inputs has a nonlinear transfer function. By this means, they have 
been used in many successful studies in local air pollution modelling for forecasting pollutants NO2, O3, SO2, CO 
and PM10 (Kukkonen et al., 2003; Kurt et al. 2008). 
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Time series modeling approaches for short-term air pollution prediction phenomena are also employed, of which 
results are comparable to other artificial intelligence methods. They mostly applied on continues time series 
datasets. These datasets include some degree of randomness, for example, random changes in meteorological 
parameters due to atmospheric events during diurnal changes and seasonal variations. Some studies have revealed 
that the air quality data are stochastic time series by making short-term estimations possible by exploring historical 
data patterns (Kao and Huang, 2000; Horowitz and Barakat, 1979). The most widely employed time series models 
(TSMs) are the non-seasonal and seasonal autoregressive integrated moving average and a type of them with 
external parameter models (e.g. ARMA, ARIMA, ARIMAX) in time series analysis (Goyal et al., 2006; Kumar 
and Goyal, 2011). In the case of conventional air pollutants non-seasonal and seasonal time series models have 
been successfully applied to monitored datasets that are based on mostly daily or monthly averaged values 
(Modarres and Dehkordi, 2005, Jian et al., 2012). Generally, the quality of models can vary on individual 
experience of issue, knowledge of time series analysis methods in the model identification stage. The visualization 
of time series forecasting plots leads to establish several models for the same dataset and most stable one can used 
in tests further. 
 
In the present study, an air pollutant, PM10, one-hour ahead concentration prediction of PM10 using ARIMA, 
ARIMAX and ANN based models were studied for the period of 2015-2016. Well-tuned models were then applied 
in short-term predictions of PM10 to determine a model best explains the variance in data with reduced inputs. 
 
Materials and Methods 
 
2.1 Data with explanatory statistics 
An hourly dataset for Düzce province in Turkey was composed containing information about local meteorological 
parameters such as air temperature (AT, °C), wind direction (WD), wind speed (WS, m/s), relative humidity 
(RH, %) and mass concentration of particulate matter (PM10, µg/m3) for the period of 2015-2016. The 
meteorological data was taken from the General Directorate of Meteorological Affairs of Turkey and PM10 data 
was taken from the Ministry of Environment and Urban Planning, using the online web service of the National Air 
Quality Monitoring Network of Turkey. Table 1 shows the descriptive statistics of these variables and Fig. 1 
visualizes an hourly time series plot for PM10 over air temperature. 
 

Table 1: Descriptive statistics of hourly dataset (2015-2016) used for investigation. 
 

 Valid 
(N) 

Min. Max. Mean Median Mode 
Freq. 

of 
Mode 

25% 
Perc. 

75% 
Perc. 

Range Std.Dev. 

PM10 8782 98.41 60.00 37 121 0.00 891 39 104 891 112.81 
AT 8926 16.02 17.00 22 383 -13.00 42 8 23 55 9.82 

WD 8926 192.29 
201.0

0 
182 71 0.00 359 123 268 359 92.79 

WS 8926 0.62 1.00 1 5568 0.00 1 0 1 1 0.48 
RH 8926 79.95 88.00 103 1563 12.00 103 63 100 91 22.78 

 
In the hourly dataset, one step forward-lagged set of these variables were constructed for including the prior data 
from one-hour before. The peak levels of PM10 can be seen during winter due to residential heating by fossil fuels 
such as coal, lignite and wood, particularly at least five months from October to March in contrast to the levels 
observed during the summer periods. PM10 and temperature values were ranged in [0-891] µg/m3 and [–13-42] 0C, 
respectively. The mean and 75% percentile of PM10 level were 98.41±112.81 and 104 µg/m3, respectively, 
however, which is higher than the acceptable limit of 90 µg/m3 declared in National Air Quality Standard of 
Turkey. The statistics showed that the atmosphere over Düzce is highly polluted by particulate matter and the 
pollution episodes particularly during winter periods can affect human health adversely. Therefore, air pollution 
forecasting models can serve a tool in identifying emergency periods and short-term pollutant levels. 
 
2.2. Modeling by Time Series Methods and ANNs 
By analyzing patterns in historical data, such as trend, seasonality and noise, one can construct regressive models 
for predicting future data points. TSMs in forecasting are constructed based on historical data pattern in the series. 
Widely used kinds of TSMs are AR, ARMA, ARIMA, etc. and their multivariate forms such as ARMAX and 
ARIMAX (Taşpınar et al., 2013; Ibrahim et al., 2009; Suganthi and Samuel, 2012).  
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Figure 1. Hourly time series plots of PM10 and air temperature for 2015-2016 period. 
 
In order to model one-hour ahead PM10 level, ARIMA and ARIMAX models with meteorological factors (AT, 
WS, WD, RH) were applied on hourly dataset. Based on these variables, the models ARIMA(p,d,q) and 
ARIMA[X](p,d,q) were examined. The non-negative integer elements p, d and q used in the non-seasonal models 
refer to the order of autoregressive part (AR(p)) and the order of differencing (I(d)) and moving average (MA(q)) 
parts of the models, and X refers to exogenous variables such as AT or WS used in this study, respectively. In the 
construction of models, the order of the model is selected by plotting the autocorrelation function (ACF) for 
determining the value of q used in MA(q) model and partial autocorrelation function (PACF) for determining the 
value of p used in AR(p) model. ARIMA model with a single variable and ARIMAX model with multi input-
variable can be represented by the following equations, respectively: 
 

t 1 1 1 1
ˆ ...t p t p t q t qy y y e e               (1) 

 
2 q

1 2 q

t 0 1 1,t 2 2,t k k,t t2 p

1 2 p

(1 ... )
ˆ ...

(1 ... )

B B B
y X X X

B B B

  
    

  

   
     

   
 (2) 

where yt is the t-th observation of the dependent variable, X1,t, X2,t, …, Xk,t are the corresponding observations of 
the explanatory variables, 0 is a constant, 1, 2, .. , k are the parameters of the regression part, and B is the 
backshift operator (Byt = yt−1, B2yt = yt−2), εt is error residuals (~N(0,σ2)), Ø1, Ø2, …, Øp, and θ1, θ2,..., θq are the 
weights for the non-seasonal autoregressive and moving average terms, respectively. In order to test the lack of fit 
of time series models, the Ljung-Box test was applied in model diagnostic and the most suitable model was selected 
according to normalized Bayesian information criteria (NBIC) (Salcedo et al., 1999; Ljung and Box, 1978). 
 
The artificial neural networks are adaptive nonlinear systems capable to approximate any function. ANNs are used 
in regression and classification studies in general, in which the inspired model that does not have a clear 
relationship between its inputs and outputs (Rumelhart et al., 1986). ANNs are built on a network of simple 
processing elements, namely neurons, that exhibit complex global behavior determined by the connections 
between the processing elements and element parameters. Generally, ANNs are made up of a number of layers 
with neurons. The ANN neurons are located in input, hidden and output layers, which is thus called as multi-layer 
perceptron (MLP) ANN in general (Fig. 2).  
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Figure 2. General structure and inputs of ANN model used in hourly PM10 modeling 
 
The first layer corresponds to the input variables to the problem with one node for each input variable. The second 
layer used to capture nonlinear relationships among variables by interconnections. The third layer provides the 
predicted values. All weights are usually initialized with random values drawn from a standard normal distribution. 
During an iterative training process, ANN calculates an output o(x) for given inputs and current weights. If the 
training process is not yet completed, the predicted output (o) will differ from the input (y). An error function, like 
the root mean squared error (RMSE) which measures the difference between predicted and observed output. 
Finally, the process stops if a pre-specified criterion is fulfilled such as checking early stopping conditions by 
calculating global error. A single neuron processes multiple inputs applying an activation function on a linear 
combination of the inputs as follows: 
 

1 1

. ( )
l m

i iq qj i j q
q j

y f w f v x b b
 

  
       

   (3) 

 
where xj is the set of inputs, wiq and vqj ate the synaptic weights connecting the qth input to the jth neuron, b is bias 
term, f is the activation or transfer function, and yi is the output of the ith neuron. Weights are the knowledge base 
of the ANN system, which represents the non-linear properties of the neuron by its activation function. The 
activation function is usually non-linear, with a sigmoid shape such as logistic or hyperbolic tangent function, 
respectively, as follows: 
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Generally, feedforward MLP networks are trained using error back propagation (BP) algorithm (Lahmiri, 2011), 
which covers heuristic and numerical optimization algorithms. Heuristic techniques include gradient descent and 
the resilient algorithm (Dong and Zhou, 2008). So, some parameters such as learning rate, learning momentum, 
hidden layer neuron count etc. have been determined before training stage and then ANN model should be 
constructed. The inputs to the ANN models also have to be selected appropriately to better simulate the problem 
under consideration. Later, these parameters were determined by testing several ANN models on the same dataset. 
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2.3. Data feature extraction and pre-processing 
Time series dataset covering the variables PM10, AT, WD, WS and RH were pre-processed prior to use in the 
models. Firstly, it’s applied to a list-wise local linear regression to fill the missing values up to six cells by columns, 
but, the bigger missing areas were remained. Thus, the average valid data was about 91% of the entire dataset. 
When inputting to ANN models, the blank inputs can be skipped, however, TSMs need fully-filled input data. 
Hence, to execute TSMs on entire dataset, all the blank cells after missing value analysis were filled by the mean 
of the actual variable. The parameter WD is also converted to wind direction index (WDI) to avoid the 
discontinuity according to the following expression:  
 

1 sin WD
4

WDI


   
 
 

 (6) 

 
In order to make input variables intercomparable before executing on the modelling framework, the variables were 
normalized in the range of 0.05-0.95 using min-max normalization given in Eq. (7) as follows: 
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y
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where y’ is the normalized value, ymin is minimum value, ymax is maximum value and y is the actual value.  
 
Results and Discussion 
 
Time Series Models and Performance Evaluation 
Time series model for predicting one-hour ahead PM10 level is somewhat difficult comparing to ANN models. 
Because, tested TSMs are all hourly based which is difficult to handle in determining input lags of external 
variables. In fact, this problem is valid for ANN models, however, training an ANN model is much more fast and 
easy over a huge dataset like this. 
 
In order to construct TSMs using ARIMA and ARIMAX methods, firstly ACF and PACF graphs were plotted for 
at least twenty lags of PM10 data. These plots were shown in Fig. 3. ARIMA model that is based on only PM10 
data is firstly constructed. Since, the data used is based on hourly values, the periodicity is set to 24 in this case. 
 

 
 

Figure 3. a) ACF and b) PACF plots for hourly PM10 data. 
 

 
In ACF plot given in Fig. 3(a) an exponential decay with many lags over indicates moving average part in the data. 
PACF plot shows a significant lag at first which is an indication of AR process. Furthermore, the data is 
nonstationary considering high order lags in ACF plot. Thus, a non-seasonal differencing can be applied, setting 
parameter d to 1. So, ACF and PCAF plots for one lag non-seasonal differenced data was given in Fig. 4. 
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Figure 4. a) ACF and b) PACF plots for one-lag differenced hourly PM10 data. 
 
One-lag differenced data shows a stationary character with time. Thus ARIMA model should include I(1) term. 
However, the degree of AR(p) and MA(q) processes are difficult to determine as periodicity is set to 24, which 
means many lags may be involved in the models. Here, although ACF plot promotes a clear MA(1) process and 
PACF plot promotes an AR(1) process at first sight, such ARIMA(1,1,1) model, other significant but negative lags 
were present in both levels at higher lags. ACF plot shows some significant lags up to 12 lag and then a sharp cut-
off is observed. Therefore, we employed some models varying p and q between 1 to 3 to identify the best model 
without unit roots, comparing their NBIC values. Table 2 shows the models tried and related model performance 
statistics. Consequently, a trial-and-error work changing these model parameters was resulted in determining 
ARIMA(3, 1, 2) model including both AR(3) and MA(2) process with the lowest NBIC of 6.607 and R2 of 0.663. 
AR lags from 1 to 3 was significant whereas MA lag at level 2 as significant. The parameter estimates of 
ARIMA(3,1,2) models was tabulated in Table 3 and arranged model equation was then given in Eq. (8). 
 
Table 2: Identified ARIMA models in the prediction of hourly PM10 levels and model statistics 

Model NBIC Stationary-R2 Significant Lags (at p<0.05) 
ARIMA(1,1,1) 0.791 0.549 AR(1), MA(1) 
ARIMA(1,1,2) 0.698 0.561 AR(1), MA(1) 
ARIMA(2,1,1) 0.692 0.602 AR(1,2), MA(1) 
ARIMA(2,1,2) 0.702 0.597 AR(1,2), MA(1) 
ARIMA(3,1,1) 0.675 0.653 AR(1,2,3), MA(1) 
ARIMA(3,1,2) 0.607 0.663 AR(1,2,3), MA(2) 
ARIMA(3,1,3) 0.670 0.658 AR(1,2,3), MA(2) 

 
Table 3: Parameter estimates of ARIMA(3,1,2) model. 

Model Partitions Parameter Estimate SE t Significance (at p<0.01) 
AR Lag 1 0.218 0.010 21.289 0.000 

Lag 2 0.845 0.005 158.374 0.000 
Lag 3 -0.364 0.010 -35.627 0.000 

Differencing Order 1    

MA Lag 2 0.996 0.002 635.015 0.000 
 

1 2 3 4
10 1.218 10 1.063 10 0.481 10 0.364 10 (1 0.996. )

t t t t t t
PM PM PM PM PM B 

   
           (8) 

 
Estimates of ARIMA(3,1,2) model with upper and lower confidence limits against to original data as time series 
plot were given in Fig. 5, which shows that estimated points fitted the historical PM10pattern very well. Also, based 
on this univariate ARIMA(3,1,2) model, an ARIMAX model with the inputs from AT, WS, WD and RH were 
constructed. These meteorological factors affect PM10 level in air in real-life, so this situation can be simulated by 
an ARIMAX model. ARIMAX models are constructed by transfer functions by calculating weights of external 
variables. After parameter estimation a model equation can be arranged based on significant lags of variables.  
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Figure 5. Line plot of the estimates of ARIMA(3,1,2) model with confidence limits against to observed data. 
 
Based on the parameter estimates for ARIMAX(3,1,2) model including the terms from meteorological factors with 
R2 of 0.667 and NBIC of 6.607, arranged ARIMAX model equation is given in Eq. (9) as follows:  
 

1 2 3 4

1 1 1 2

1 4

10 1.218 10 1.063 10 0.481 10 0.364 10 (1 0.996. )

( 0.768 ) ( 0.008 ) ((1 9.021 ) / (1 1.193 0.552 ))

( 0.463 0.484 )

t t t t t t

t t t t t t t

t t t

PM PM PM PM PM B

AT AT WDI WDI WS WS WS

RH RH RH


   

   

 

           

            

   

 (9) 

 
Parameters estimates of ARIMAX model showed that PM10(t) was predicted by using AT at lags 0-1, WDI at lags 
0-1, WS at lags 0-2 and RH at lags 0,1,4. Performance of ARIMA and ARIMAX models for one-hour ahead PM10 
concentration prediction is very similar, comparing R2 values. Thus, we selected PM10 ARIMAX model with 
external parameters from meteorological factors as benchmark for further tests. 
 
ANN Models and Performance Evaluation 
 
Designing of ANN models are related to selection of some parameters such as hidden layer neuron count and 
learning rate. Before construction of ANN model, the entire dataset is divided into training (75%), test (15%) and 
validation sets (10%). Later, ANN models were designated and model parameters were set. In the present study, 
an open source library, Fast Artificial Neural Network (FANN) implemented by Nissen (2003), was utilized as 
ANN modeling engine in the prediction of one-hour ahead PM10 concentration with lagged input vectors. The 
input vector includes the first lags of all model inputs as shown in Fig. 2, which can be written as 
PM10t = fnet (PM10t-1, ATt-1, WDt-1, WSt-1, RHt-1) model. The FANN library offers an automated training method, 
so-called cascading-training procedure, which provides a way to determine the final neural network structure 
consists of a number of hidden layers with one shortcut connected neuron in each. Therefore, the ANN model were 
set by utilizing cascading-training technique of this library. 
 
Feed forward backpropagation type ANN with sigmoid function for transfer functions of input layer and tanh for 
hidden layer were then determined in training of networks. Maximum number of epochs was set to 1000, applying 
an early stopping criterion to avoid over fitting or underfitting, setting the validation process at every 10 training 
epochs. A starting learning rate of 0.45 was gradually decreased by 1.1% at every epoch during the 
cascading-training procedure, which was resulted in an ANN(5-13-1) model, including 13 hidden layer neuron. 
Several experiments with different structures were tried as mentioned here, however, ANN(5-13-1) model 
produced the best error measure and model accuracy with RMSE of 0.478, training R2 of 0.857 and testing R2 of 
0.841. Also, Index-of-Agreement (IA) that measures prediction errors was calculated to test the quality of fit. IA 
value of 0.81 obtained with this model, which is close to 1.0, suggested a well agreement with the selected model. 
Thus, the validation of ANN model did not tend to underfitting or overfitting on average. A performance plot 
obtained from predicted values from ANN model was visualized in Fig. 6. The performance plot of the results of 
the best ANN model for the whole dataset is visualized on Fig. 3. The red line indicates an exact fit of R2=1.0, 
hashed black line indicates a linear fitting line of R2=0.857. 95% confidence band limits were also shown in blue-
dotted lines, clearly indicating the most of the data points fall in the band limits. 
 
Hourly time series dataset was plotted against to predictions of ANN(5-13-1) model in Fig. 7. All the data is well 
followed by ANN model, simulating historical pattern of hourly PM10 concentration. As it can be seen in Fig. 7 
that at some extreme conditions with elevated PM10 levels, particularly the levels higher than 550 µg/m3 observed 
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during strictly calm days. Due to air circulation issues occurred in Duzce province in calm nights during winter 
periods, extreme conditions can be observed. Therefore, elevated PM10 levels mostly occurred winter times with 
a rate of 2% for levels higher than 500 µg/m3. However, most frequent PM10 values within a range of µ±3σ were 
predicted reasonably successfully. Extreme value problem for ANN model is a well-known issue, because neural 
networks cannot successfully evaluate less trained input values or less frequent data observed at extreme 
conditions. However, all the ANN models experimented in the tests were very successful in the predictions 
comparing to TSMs. 
 

 
 
Figure 6. Performance plot for ANN(5-13-1) model and linear fitting line 
 

 
 
Figure 7. Hourly time series plots for the predictions of the ANN model against to actual data 
 
Conclusion 
The present study investigated short-term PM10 modelling based on hourly monitoring data of meteorological 
factors and particle concentrations. In order to obtained a reasonable model for time series data, we have used time 
series modeling techniques and ANN models. ARIMA and ARIMAX models were applied to data as TSMs. A 
univariate ARIMA(3,1,2) model were fitted to predicted hourly PM10 level one-hour ahead. This model included 
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AR(3) and MA(2) processes with one lag differentiation, with R2 of 0.663. Based on this model, a multivariate 
ARIMAX(3,1,2) model fitted by covering the terms from PM10(t-1...t-4), AT(t..t-1), WDI(t..t-1), WS(t..t-2) and RH(t,t-1,t-4) 
with R2 of 0.667. Therefore, ARIMAX model is selected as benchmark to compare predictions by ANN model.  
 
ANN models for prediction next-hour PM10 level were designed. The best ANN model is in the form of 5-13-1 
with 13 hidden neuron in middle layer, with testing R2 of 0.857. The input vector of ANN was PM10t-1, ATt-1, 
WDt-1, WSt-1, RHt-1 and the output was PM10t. Cascading-learning method of FANN library was utilized to 
determine ANN model parameters such as neuron count and learning rate. ANN model is slightly tended to 
underpredict mostly at extreme conditions but yielded better prediction results than TSMs in general. On the other 
hand, ANN model did not tend to overpredict as time series plots indicated. Comparing to TSMs, ANN models 
were very flexible in handling of model and execution, because TSMs need to be updated with new model residuals 
before operating on new input data in any new hour. Hence, TSMs are not tolerate any interruption on time scale 
as they were constructed on sequenced residual data, so their handling in real-life applications are difficult. On the 
other hand, ANN models obtained after training step can be used on any data with proper input vector. Therefore, 
we concluded that a real-life application of emergency perception strategy can be designed based on ANN models 
for hourly PM10 prediction. However, to properly tackle with extreme values of air PM10 levels observed during 
pollution episodes in winter periods in particular, some other methods such as time based hybrid models or discrete 
ANN models for higher levels should be considered. 
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