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Abstract This study aims to understand bicycle property easily via visualizing it by using Self-organizing Map, SOM. Whole property of the bicycle is not defined only by individual performances of components, such as frame, wheels and tires. The whole property is affected by interaction among those components and various situations. Therefore it is difficult to understand the effectiveness of each part to the bicycle performance. This paper describes a case study for assessing two road bike wheels by using SOM. We measured various outputs such as the speed of the bike, the heart rate of the rider and the driving power from some test ridings. And then we assessed effectiveness of the wheels to the body of the rider and the running performance of the bicycle by visualizing these measured data by using SOM.


Key words: self-organizing map, bicycle, visualization of measurement.
Introduction

A bicycle is composed of various components, such as frame, wheels and tires, with depending on its user’s purpose and preference. Whole property of the bicycle is not defined only by individual performances of each component, such as frame, wheels and tires. The whole property is affected by interaction among those components and various situations. Therefore it is difficult to understand the effectiveness of each component to the bicycle performance. So it is necessary to understand the relationship, such as the interaction and the contributions, among the whole property and those components. In order to understand the relationship, it is considered that a data mining is effective. The data mining uses various input and output data, such like each component's property and condition, speed, and rider’s heart rate and pedaling power, as a high-dimensional data set.

In this paper, some test ridings of a road bike is reported, and its measured data is visualized by using SOM. Then an assessment of the bicycle component which affects to the rider’s body and performance is reported by using the visualized data.
Self-organizing Map and Its Example by using Visualization of Virtual Data
In this section, an overview of Self-organizing Map, SOM, is set forth firstly, and then, a concrete example of visualization by the SOM is shown.
Self-organizing Map

Self-organizing Map, SOM is a type of artificial neural network which visualize a non-linear statistical relationship of a high-dimensional data set by translating it to a geometrical relationship of a low-dimensional map. Geometric distance on the above low-dimensional map represents the similarity among the high-dimensional data (Kohonen 2001). Recently, the SOM is utilized as a data mining method for a large scale data's classification and correlation analysis at wide areas, such like medical care (Abe 2009), business (Honkela 2009), industry and engineering (Cottrell 2009).

In this research, components and conditions of a road bike are set as input data. And then various data measured at test ridings, such as speed, heart rate and pedaling power are set as output data. The input and output data are treated as a high-dimensional data set and its relationship is visualized by using SOM. As the result, it enables to understand the components’ properties which affect to the driving performance and the body visually.
Visualization of virtual testing data by using SOM

Here, some results of visualizing a virtual testing data set are shown as concrete examples of SOM. The virtual testing data set is generated by approximation equations of driving power at riding of a road bike.

Approximation equations of driving power at riding

When a road bike cruises at a constant speed V [km/h] on a gradient of road G [%] with windless condition, required driving power P [W] is approximated by the following eqn (1). Where RA [N] is air resistance force, RR [N] is rolling resistance force and RGr [N] is climbing resistance force.
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The resistance forces in the eqn (1) are approximated by the following equations. Firstly, the air resistance force RA [N] is approximated by the following eqn (2). Where ρ [kg/m3] is air density, CD is coefficient of drag and A [m2] is frontal projected area.
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The coefficient of drag varies according to shape of a road bike and posture of a rider. The frontal projected area also varies according to physique and posture of the rider. Here, the coefficient of drag and the frontal projected area are approximated according to Basset’s report (Bassett 1999). The coefficient of drag is CD = 0.88 and the frontal projected area A [m2] is approximated by the following eqn (3). Where MRider [kgf] is rider’s weight and TRider [cm] is rider’s height.
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Secondly, the rolling resistance force RR [N] is approximated by the following eqn (4). Where MBike [kgf] is bike’s total weight, g [m/s2] is gravitational acceleration and CR is coefficient of rolling resistance. The coefficient of rolling resistance varies according to some conditions such as tire and road.
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Finally, the climbing resistance force RGr [N] is approximated by the following eqn (5).
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Generation of virtual testing data

According to the above approximation equations, some velocities at running on some gradients of road with the driving power P = 300 [W] are calculated. Where, the bike’s total weight MBike [kgf] and the coefficient of drag CD are set as input variables. The speed VGr0, VGr5 and VGr10 [km/h] are the speed at the gradient of road, 0, 5, 10 [%] respectively.

The input, output variable ranges and the constant values of the other parameters are shown in table 1. Virtual testing data set of 121 cases is calculated by 11×11 full factorial DOE of 11 level input variable ranges shown in Table 1.

Table 1: Input, output variable ranges and the constant values of the other parameters
	
	Item
	Range or constant value

	Input variable
	Total weight of Bike [kgf]
	6.0 ≦ MBike ≦ 10.0

	
	Coefficient of drag
	0.7 ≦ CD ≦ 0.9

	Constant
	Rider’s weight [kgf]
	MRider  = 55

	
	Rider’s height [cm]
	TRider  = 165

	
	Air density [kgf/m3]
	ρ = 1.1689

	
	Coefficient of rolling resistant
	CR = 0.005

	
	Gravitational acceleration [m/s2]
	g = 9.81

	
	Driving power [W]
	P = 300

	Output variable
	Speed at gradient of road 0% [km/h]
	39.46 ≦ VGr0 ≦ 42.87

	
	Speed at gradient of road 5% [km/h]
	24.40 ≦ VGr5 ≦ 26.23

	
	Speed at gradient of road 10% [km/h]
	15.37 ≦ VGr10 ≦ 16.42


Visualization by using SOM

SOM maps were made by using the above virtual testing data set of 121 cases. The map of total weight of bike, coefficient of drag, speed at gradient of road 0%, 5% and 10% are shown in fig. 1 to 5 respectively.
Each case was put on the same location of each map by SOM. Correspondence among input and output variables were visualized by the location on the map. For example, a testing case put on the upper right on each map had the lightest total weight and the lowest coefficient of drag. And we can understand that the test case has the fastest speed at every gradient of road from watching the location of the speed map. On the other hand, a testing case put on the upper left on each map had heavy total weight and low coefficient of drag. And we can understand that the speed of the test case is relatively fast at the gradient of 0%, intermediate at the gradient of 5% and low at the gradient of 10%.

Furthermore, we can understand interaction relationships among variables by comparing the tendency of distribution of each map. For example, the map of speed at the gradient of 10% shown in fig. 5 and the map of total weight of bike shown in fig. 1 are opposed each other but their distributions seem similar tendency. This means that they have strong negative correlation. Secondly, it does not seem commonality in comparing the distribution in fig. 5 with the map of the coefficient of drags shown in fig. 2. This means that the speed at the gradient of 10% and the coefficient of drag have low correlation. On the other hand, by comparing the map of speed at the gradient of 0% shown in fig.3 with fig. 1 and fig. 2, we can understand that the correlation with total weight of bike is low and the correlation with the coefficient of drag is strong negative.
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Figure 1: Map of total weight of bike [kgf]
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Figure 2: Map of coefficient of drag
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Figure 3: Map of speed at gradient 0% [km/h]
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Figure 4: Map of speed at gradient 5% [km/h]
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Figure 5: Map of speed at gradient 10% [km/h]

Approximate equations described above indicate that the air resistance force dominates when the gradient is low. As the result, the coefficient of drag affects strong and the weight of bike affects low at low gradient. On the other hand, the climbing resistance force dominates when the gradient is high. As the result, the weight affects strong and the coefficient of drag affects low at high gradient. Though these relationships are clearly natural, these results are meaningful. Because it shows that even if we do not know approximate equations or physical phenomena, we could find out some relationship among some data set by visualizing it by using SOM.

In this section, a result of visualization of virtual testing data set by using SOM was shown as a concrete example. Though this result was same as commonly accepted theory, this result shows that even if some data set has unknown relationship, we can find out the hidden relationship visually by comparing distribution of each SOM map. So we can consider this visualization method is effective.

Road Testing

In this section, a case study for assessing road bike wheels was carried out. The objective of this case study was a verification of the effectiveness of the SOM visualization at actual road testing. The physical records of a rider and the driving records of a bike were measured at the testing rides. Then the driving properties were analyzed by visualizing these records on the SOM maps.
Testing equipment

Here, two types of road bike wheels shown in table 2 were evaluated. Firstly, It was inspected that how the difference of these wheels were represented on the SOM maps. Then the changing of the driving properties was analyzed. The driving records were measured by using a power meter, a cycle computer and a heart rate monitor. A road bike shown in fig. 6 (left) was used at the road testing. The driving power was calculated by using torque and rotation angular velocity of a crank. The torque and the rotation angular velocity was measured by the power meter which was attached on a spider arm shown in fig. 6 (right). The measuring equipment and measured items are shown in table 3.
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Figure 6: Road bike and Power meter

Table 2: Data table of testing wheels
	Wheel
	Material of Rim
	Rim height [mm]
	#Spoke
	Weight [g]

	Type A: ALX630
(Alex Global Technology, Inc.)
	Aluminum alloy
	23.7
	Front: 20
Rear: 24
	Front: 624
Rear: 806

	Type B: WH-7900-C35-TU
(Shimano Inc.)
	Carbon FRP
	35
	Front: 16
Rear: 20
	Front: 602
Rear: 737


Table 3: Measuring equipment and measured item
	Measuring equipment
	Name
	Measured item

	Road bike
	TCR Alliance 2009
(Giant Manufacturing Co. Ltd)
	

	Power meter
	Cinqo Saturn
(Quarq Technology, Inc.)
	Average driving power [W] 
Average cadence [rpm]

	Cycle computer
	Edge 800
(Garmin Ltd.)
	Average speed [km/h]

	Heart rate monitor
	Premium Heart Rate Monitor
(Garmin Ltd.)
	Average heart rate [bpm]


Testing method

Map of the testing road is shown in fig. 7. The testing was carried out from point A to point B on the map. The distance of the road was 5.2km. The road profile was a straight and flat. Rider kept a constant speed with fixed gear ratio of 3.13 at the testing. While going back to the start point, the rider took rest by riding at low speed.
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Figure 7: Map of the testing road

Results and discussion

Number of the total testing rides was 26 times, thus two types of the wheels were tested 13 times each. The result of the testing is shown in table 4. The measured items were average speed, average heart rate, average cadence and average driving power. The “Map ID” in the table means a location of each record on the SOM maps which described below section.
Table 4: Result of the testing rides
	Wheel
	Date
	Data ID
	Map ID
	Speed [km/h]
	HR [bpm]
	Cadence [rpm]
	Power [W]

	Type A:
ALX630
	2011.11.29
	0
	53
	34.2
	156
	88
	166

	
	
	1
	31
	34.3
	170
	89
	187

	
	
	2
	23
	36.9
	172
	95
	190

	
	2012.1.12
	3
	12
	34.9
	181
	90
	216

	
	
	4
	1
	34.1
	183
	88
	210

	
	
	5
	0
	32.4
	186
	84
	210

	
	2012.1.29
	6
	63
	33.7
	156
	87
	147

	
	
	7
	83
	32.3
	152
	83
	136

	
	
	8
	74
	34.0
	154
	88
	131

	
	2012.3.6
	9
	50
	32.5
	174
	84
	173

	
	
	10
	80
	30.5
	158
	79
	130

	
	
	11
	90
	30.0
	155
	77
	127

	
	
	12
	90
	29.2
	157
	75
	128

	Type B:
WH7900C35
	2011.11.23
	13
	57
	34.6
	166
	88
	177

	
	
	14
	27
	35.2
	174
	90
	197

	
	
	15
	39
	35.3
	173
	90
	191

	
	
	16
	9
	36.4
	177
	93
	199

	
	2011.11.27
	17
	38
	35.4
	173
	90
	196

	
	
	18
	48
	35.4
	168
	90
	194

	
	
	19
	17
	35.2
	176
	90
	211

	
	2012.1.22
	20
	8
	35.9
	182
	92
	200

	
	
	21
	6
	35.1
	185
	89
	207

	
	
	22
	6
	34.8
	184
	89
	198

	
	
	23
	97
	32.3
	169
	82
	140

	
	
	24
	79
	34.2
	171
	87
	137

	
	
	25
	99
	32.1
	172
	82
	134


Visualization of testing data by using ordinary 2D graph

Firstly, two types of the wheels were compared by using an ordinary 2D graph shown in fig. 8. Where horizontal axis represents average driving power and vertical axis represents average speed. Regression equation of each wheel was calculated by the least-square method. The regression equation of the type A, ALX630, was the following eqn (6) and that of the type B, WH7900C35, was the following eqn (7) respectively.
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Figure 8: Average Driving Power vs. Agerage Speed

By comparing eqn (6) and eqn (7), the slope of the line was approximately equal. The type B, WH7900C35, was faster about 1km/h than the type A, ALX630. The characteristic differences of the two wheels were the rim height and the number of spoke. The rim height, the number of front and rear spoke of the type B were 35mm, 16 and 20 respectively. On the other hand, those of the type A were 23.7mm, 20 and 24 respectively. The air resistance force generated by rotation of wheels is strongly affected by turbulence which occurred from spokes. The type B had higher rim height, thus it was shot spoke length, and the number of spokes less. Therefore, the air resistance force of the type B was lower than that of the type A. The testing road was flat and thus the air resistance force dominated the total resistance force. It considered that this caused the clear difference between two wheels.
Visualization of testing data by using SOM

Secondly following to the previous section, the two types of wheel were compared by using the SOM maps which generated from the same testing data. The SOM maps of the wheel, the driving power, the cadence, the speed and the heart rate are shown in fig. 9, 10, 11, 12 and 13 respectively. In addition, the location of each record in the SOM maps is shown in fig. 14.

In the wheel map of fig. 9, the type B, WH7900C35, was located on the upper side and the type A, ALX630, was located on the lower side. And in the driving power map of fig. 10, transition from high power to low power was mapped from left side to the right side. By using the above two maps, dividing areas of the other maps on the border of the wheel map and comparing the transition from the left side to the right side, the influence of the difference of the wheels and the transition of the driving power to the other properties are able to understand visually.

The cadence map of fig. 11 and the speed map of fig. 12 seem to similar configuration, since the cadence and the speed had proportional relationship by fixed gear ratio while the road testing. In addition, from the left side to the right side at the upper area of the map where the type B wheel, WH7900C35, was located, the cadence and the speed shifted from high to low by corresponding to the transient of the driving power.
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Figure 9: Map of the type of wheel where the type A, ALX 630, is represented as 1, and the type B, WH7900C35, is represented as 2.
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Figure 10: Map of the average driving power [W]
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Figure 11: Map of the average cadence [rpm]
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Figure 12: Map of the average speed [km/]
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Figure 13: Map of the average heart rate [bpm]
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Figure 14: Map ID where the riding records were located on each SOM map
On the other hand, at the lower area of the map where the type A wheel, ALX630, was located, though the maximum driving power was located on the lower left, the location was not represent the highest cadence and the highest speed. According to fig. 8 of the above section, measured data of the type B wheel did not stray from the regression line, but those of the type A wheel strayed from the regression line relative to the type B. It is considered that this is the reason of the above. In fig. 13 of the heart rate map, from the left side to the right side, it seems that the heart rate transitioned from high to low, similar to the driving power.

From the results so far, it was confirmed that the qualitative relationships among variables of the measured data could be understood by treating the data as a high-dimensional data set and visualizing it by using SOM. Generally, it is difficult to understand the interaction relationship among high-dimensional data set without prior information or knowledge. Therefore, it is considered that before analyzing the quantitative relationship, grasping the qualitative relationship by using SOM is efficient.
Conclusions

In this paper, we described a case study for assessing two road bike wheels by using SOM. We measured various outputs such as the speed of the bike, the heart rate of the rider and the driving power from some test ridings. And then we assessed effectiveness of the wheels to the body of the rider and the running performance of the bicycle by visualizing these measured data by using SOM. We confirmed the efficiency of the SOM map for understanding qualitative relationship among high-dimensional data to a certain extent. As future work, we increase the measurement data by taking further road testing under more complicated conditions, and examine the measurement data in more detail.
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