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Abstract:  Motivated from a phenomenological viewpoint, three confining potentials have been 
studied in the Klein-Gordon equation framework. In particular we study the phenomena of quark 
leakage for these potentials. The transmission coefficient values have been obtained for all the 
potentials, using WKB [Wentzel, Kramers & Brillouin] method and compared with potentials 
already discussed by previous authors. We observe that one of the potentials considered by us 
strongly supports the existence of free quarks because of the comparatively large values of 
transmission coefficients, as predicted by our model.      
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Introduction 

 
Mankind has sought the elementary building blocks of matter ever since the days of the Greek 
philosophers. Over time, the quest has been successively refined from the original notion of indivisible 
“atoms” as the fundamental elements to the present idea that objects like quarks lie at the heart of all 
matter. 
 
With the new discoveries being made at the Large Hadron Collider at CERN, interest in hadron 
spectroscopy has still not waned. Many attempts have been made in the past as well in the present to 
study the hadron spectroscopy, using both the non-relativistic Schrödinger equation and the relativistic 
wave equations viz., the Klein-Gordon and the Dirac equations. 
 
It may be noted that the model involving fractionally charged quarks was proposed by Gell-Mann 
(1964) and Zweig (1964) to account for the explosion of subatomic particles discovered in accelerator 
and cosmic ray experiments during 1950s and early 1960s. Their model won acceptance because of a 
few semiquantative tests e.g., a large weight of circumstantial evidence and many quantitative facts 
about strong interactions which it apparently explains. Since then, however, there have been many 
unsuccessful attempts to find quarks at accelerators, in sea water, in rocks and in cosmic rays. Though 
La Rue et al (1977) have claimed that they have found some evidence for quarks in their super-
conducting levitation experiment involving niobium pellets. 
  
There have been many attempts to understand the physical mechanism of quark confinement. However, 
none of them is completely convincing and satisfactory. Even the most ambitious attempts based on 
quantum chromodynamics (QCD) provide rather vague explanations of the mechanism of confinement. 
The problem was earlier attacked also with the help of less ambitious but more plausible models like 
naïve strings, bags, suitable potentials etc. The problem of confinement was also tried, treating hadrons 
as systems of quark solitons with some suitable non-linear interactions (Werle, 1993).  
 
Kang and Schnitzer (1975) have calculated meson spectra, using a potential function bar  as the 
fourth component of a four-vector in the Klein-Gordon equation. The quark-antiquark bound-state 
energy values (which correspond to meson masses) were calculated using WKB approximation. 
Gunion and Li (1975) have studied the same potential as a Lorentz scalar in the Klein-Gordon and 
Dirac equations. The motivation of their using the linear potential came from field-theoretic arguments.  
Sharma with his collaborators (2008, 2007, 2004, 2003, 1998, 1988, 1984, 1983, 1982, 1982, 1980)  
has extensively studied quark confinement and have calculated bound-state spectra for both the light 
and heavy mesons e.g., the bound-states for cc , bb , ss  etc., spectra have been calculated by them. 
Recently Sharma et al (2000, 2003) have also evaluated the spectra of tt , the so called toponium 



meson which has yet to be observed. The heavy top quark was detected by two teams working at Fermi 
National Laboratory, the first one the so called CDF team (Abe et al. 1995) reported its mass as 
176±13GeV and the other team the D collaboration (Abachi et al. 1995) estimated its mass as 
199±30GeV. The top quark appears to be a point-like particle: it has no internal structure that one can 
discern.   

In the above context it is always interesting to study the phenomenon of quark leakage, using different 
potential models. The application of linear (Kang & Schintzer, 1975) and the oscillator potentials (Ram 
& Halasa, 1979) in a relativistic framework such as the Klein-Gordon equation gives rise to the 
phenomenon of tunnelling and hence to the leakage of quarks. Ram (1978) has discussed numerically 
the tunnelling phenomenon for a linear potential and also Kajwadkar & Sharma (1983) have obtained 
transmission coefficients for two potentials viz., logarithmic and cubic power potentials. 

To get a deeper insight into the phenomena of quark leakage, we deal in this paper numerically, with 
the quark leakage for three different potential models. It may be interesting to note that all the three 
potentials have already been successfully applied in explaining the meson spectroscopy. 
 
  Potentials considered by us here are:  
 

(I)– A fractional power potential (Martin, 1980) given by  
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(II)- A power law potential (Sharma &Sharma, 1984) of the form 
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       with GeVm 10  and qm being the quark mass. 
 
(III)- A logarithmic potential of the type (Jena, 1983)  
          01 1log VrgrVIII            (3) 
 
Here in all the three potentials (I), (II) and (III), 0,1 Vg > 0. 
 
In the following section 2, we study the tunnelling phenomenon for all the three above mentioned 
potentials by evaluating expressions for their corresponding transmission coefficients.   
 
Finally, in section 3, we give a brief discussion on the results obtained by us in section 2. 
 

Theory
The motion of a quark in one-body central potential rV  is governed by the following 

relativistic Klein-Gordon equation 1c : 
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The radial part of this equation can be simplified to the form 
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Following Merzbacher (1970), we use the WKB approximation and obtain the following 
expression for the transmission coefficients of s-states 0l  
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where 1r  and 2r are the roots of the equation .0rk  
 

Results and Discussion 
 
The values of these transmission coefficients obtained for different values of m  and 1g are 
depicted in Tables 1 and 2. For the purpose of comparison, the transmission coefficients for linear 

(Kang & Schnitzer, 1975); cubic and logarithmic potentials [ of the type 
0

ln
r
rg ] (Kajwadkar & 

Sharma, 1983) have also been shown in Table 1. It may be noted that our equations (4), (5) and (6) 
can also be used in the calculations of transmission coefficients for a system consisting of quark 
and anti-quark but with the following substitutions (Kang &Schnitzer, 1975; Ram & Halasa, 1979; 
Iyer &Sharma, 1982; Sharma & Iyer, 1982): 
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The values of these transmission coefficients for different mesons along with parameters actually 
used in obtaining the meson spectra, are shown in Table 3. 
 
 
 
 
Principal observations made in this paper are: 



(A)  The smaller the effective power of the potential, the lower is the value of the  
       transmission coefficient. Consequently the probability of leakage of quark is  
       higher for the potential with larger effective power (Table 1). 
 
(B) For potential (3), the transmission coefficients are comparable with those obtained for the 

logarithmic potential (Kajwadkar & Sharma, 1983), see- Table 1. 
 
(C) The fall in the value of transmission coefficient with increasing mass is steeper for smaller 

values of effective power (Fig. 1). From Fig. 1 and Table 3, it is also evident that the 
transmission coefficients for potential (1) are very small while for the potential (2) they are 
much higher. 

 
(D) The effect of the variation in 1g  is perceptibly larger for potential (1). For this potential, there 

is a sharp rise in the value of transmission coefficient with increasing value of 1g  (Fig. 2). 

For large values of 1g , however, the transmission coefficient for potential (1) attains almost a 

constant value. While for potential (2), it is nearly constant for all values of 1g . For potential 

(3), the variation in the values of the transmission coefficients with the values of 1g lies in 
between those obtained for potentials (1) and (2) within the range considered. 

 
(E) Potential (2) supports strongly the existence of free quarks because of comparatively large 

values of transmission coefficients predicted by this model. Potential (1) on the other hand, 
gives rise to a very small possibility of quark leakage. Particularly, as can be seen from Table 
3, leakage of quarks for all the three mesons are practically zero for potential (1). For  
meson, values of transmission coefficients predicted for potential (2) are higher than those 
obtained for linear and oscillator potentials. For ss  mesons, transmission coefficients 

predicted by potential (2) are independent of energy [since sm  has been chosen to be equal to 
0.5 GeV, consequently potential (2) becomes a linear potential]. Similar observations were 
found by Kang and Schnitzer (1975) and Ram and Halasa (1979) for the linear potential.    

 
(F) It may be of interest to note that the potential (2) for meson state  with the parameters 

chosen gets transformed to an oscillator potential. The calculated values of T are in 
agreement with the corresponding values for the oscillator potential calculated by Ram & 
Halasa (1979) [see Table 3]. Similarly, for  meson states, the parameters chosen transform 
potential (2) to a linear potential and the values of calculated T drop and agree with the 
values calculated by Kang &Schnitzer (1975).   

 
(G) From Fig. 1, we see that as the mesons get heavier, it becomes harder for them to leak through 

the confining potential barrier. From Fig. 2 we observe that at low 1g  values, the 
transmission coefficient associated with potential (1) decreases more rapidly as the meson 
mass increases, followed by those associated with the third and lastly the second potentials. 
However, at higher 1g values, the transmission coefficient that decreases the greatest is for 
the third potential, with the first being the least decreasing with increasing meson mass.   

 
(H) From Fig. 2, we observe that the value of transmission coefficient increases as 1g increases. 

For potential (2), the transmission coefficient rises from low values of 1g , approaching some 

asymptotic value as 1g increases. For the first and the third potentials, the transmission 

coefficient remains very close to zero as 1g increases, after which it jumps to the common 
asymptotic value. This “jump” occurs at greater values for the first potential than for the third. 
For heavier mesons, the transmission coefficient increases much more slowly to attain the 
common asymptotic value.    

 
 
 



 
 Table 1: Transmission coefficients T for the three potentials (I), (III) and (III). 
For potential (I) 0,0.1 0

1.1
1 VGeVg  and GeVE 0.1  

For potential (II) ,0,0.1 02
21

1 VGeVg m
m

and GeVE 0.1  

For potential (III) ,0,0.1 01 VGeVg  and GeVE 0.1  
 

Quark 
mass 

m 
(GeV) 

T for potential 
(I) 

1.0rVI  

T for potential 
(II) 

m
m

II
o

rV 2
 

GeVm 10  

T for potential 
(III) 

)1log( rVIII

 

T for Linear 
potential (Ram, 
1978) 1 

T for cubic 
potential 
(Kajwadkar, et 
al, 1983)  

T for logarithmic 
potential 
(Kajwadkar  
et al, 1983) 

0.1 0.520 0.638 0.609 0.63 0.63 0.61 
0.2 0.190 0.622 0.518  0.62 0.53 
0.3 8.555×10-3 0.578 0.382 0.53 0.60 0.40 
0.4 4.622×10-6 0.498 0.235 -- -- -- 
0.5 3.292×10-13 0.380 0.118 0.37 0.55 0.14 

0.75 3.042×10-79 0.0834 8.008×10-3 -- -- -- 
1  0 3.346×10-3 1.285×10-4 0.04 0.27 4.6x10- 4

1.25  0 1.047×10-6 3.731×10-7 -- --  
1.5  0 5.647×10-15 1.249×10-10 -- --  
2  0 1.027×10-85 1.313×10-21 -- --  

 

Table 2: Transmission coefficients T for potentials (I), (II) and (III) for different values 1g . Other 
parameters are:  

,0.1 GeVE ,0.1 GeVm and .00V Units of 1g for different potentials are same as used in 
Table I. 
 

Quark 
mass 

(GeV) 

9.01g  0.21g  0.31g  
T for 

potential 
1.0rVI  

T for 
potential 

m
m

II
o

rV 2

T for 
potential 

)1log( rVIII

T for 
potential 

1.0rVI

 

T for 
potential 

m
m

II
o

rV 2

T for potential 
)1log( rVIII

T for 
potential 

1.0rVI  

T for 
potential 

m
m

II
o

rV 2

T for potential 
)1log( rVIII

0.1 0.3307 0.6377 0.6016 0.6399 0.6380 0.6306 0.6400 0.6382 0.6347 
0.2 0.01146 0.6209 0.4903 0.6394 0.6261 0.6025 0.6400 0.6282 0.6188 
0.3 1.1883×1

0-6 
0.5745 0.3310 0.6382 0.5992 0.5562 0.6400 0.6080 0.5924 

0.4 4.9984×1
0-16 

0.4860 0.1763 0.6354 0.5567 0.4937 0.6399 0.5795 0.5560 

0.5 1.5854×1
0-36 

0.3555 0.0720 0.6292 0.5016 0.4188 0.6398 0.5464 0.5104 

0.75  0 0.0557 2.310×10-3 0.5729 0.3452 0.2187 0.6388 0.4675 0.3678 
1  0 8.8124×1

0-4 
1.134×10-5 0.3529 0.2141 0.07743 0.6344 0.4138 0.2186 

1.25  0 1.6490×1
0-8 

5.3099×10-9 0.0227 0.0840 0.01828 0.6149 0.3396 0.1046 

1.5  0 2.5034×1
0-20 

1.124×10-13 2.399×1
0-6 

0.0168 2.8730×10-3 0.5551 0.2587 0.04003 

2  0  0 4.142×10-29 8.9564×
10-46 

4.8777×1
0-6 

1.9045×10-5 0.1526 0.0854 3.0234×10-3 

 
 



 
Table 3: Transmission coefficients T for different Mesons. Parameters used are: 
For potential :)(rVI   

GeVmGeVmGeVVGeV su 52.0,39.0,01.7,996.5 0
1.1

and GeVmc 806.1 . 

For potential :rVII  
 

(i) For mesons-  

            25.1
10 365.2,0.1,0.2 GeVgGeVmGeVm and GeVV 8833.30 . 

(ii) For  mesons-  

            ,1,5.0 0 GeVmGeVm 2
1 2725.0 GeVg  and GeVV 089.10 . 

(iii) For mesons-

             3
10 037.0,0.1,25.0 GeVgGeVmGeVm and .761.00 GeVV     
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Figure 1: The variation of transmission coefficient T with the quark mass. The solid plots correspond 

to GeVg 0.11 while the dashed curves are for GeVg 0.21 .  
 

  
 
 

 
 

 
Figure 2: The variation of transmission coefficient T with 1g . The solid plots correspond to 

GeVm 1.0 while the dashed curves are for GeVm 4.0 .  
 

.    



References 

Gell-Mann, M. (1964), “A Schematic model of Baryons and Mesons”, Phys. Lett., 8, 214-215. 
Zweig, G. (1964), “An SU3 Model for Strong Interaction Symmetry and its breaking”,   CERN, 
Preprints 8182/TH. 401; “An SU(3) Model for Strong Interaction Symmetry and its Breaking II”,  
8419/TH. 412. 
La Rue, G.S., Fairbank, W.M. and Hebard, A.F. (1977), “Evidence For the Existence of Fractional 
Charge on Matter”,  Phys. Rev. Lett., 38, 1011-1014. 
Werle, J. (1993), Acta Physica Polonica B., “Quark confinement through hidden breaking of 
colour symmetry”. 24, 1115-1120.   
Kang, J.S & Schnitzer, H.J. (1975); “Dynamics of light nad heavy bound quarks”,  Phys Rev. D 
12, 841-854. 
Gunion, J.F. & Li, L.F. (1975);  “Relativistic treatment of the quark-confinement model”,  Phys. 
Rev. D 12, 3583-3588. 
Sharma, L.K. & Luhanga, PVC. (2008). “Scalar potential in the Dirac equation and quark 
confinement”. Malaysian J. of Physics, 29(1&2), 1-8. 
Sharma, L.K. & Sebitla, L.D. (2007). “Bound-state spectra of QQ system: Relativistic and Non-
Relativistic” Malaysian J. of Physics, 28(3&4), 63-70. 
Sharma, L.K., Fiase, J.O., & Whende, W. (2004). “Heavy-meson spectroscopy for the 
superposition of general potential-cum-centrifugal potential” Chiang Mai J. of science, 31, 171-
180. 
Sharma, L.K. &Fiase, J.O. (2003). “Meson Spectra: Power law potential model in the Dirac 
equation” Botswana J. of Tech. 12, 243-249. 
Mundembe, V.R. &Sharma, L.K. (1998). “Toponium bound-state predictions of the modified 
Two-step potential model” Malaysian J. of Physics, 17, 113-121.        
Sharma, P.C & Sharma, L.K. (1988). “Hadrons in a relativistic power law potential” Indian J. of 
pure and appl. Physics, 26, 347-352. 
Sharma, L.K. & Sharma, G.S. (1984). “Quark potentials for mesons in the Klein-Gordon equation” 
Pramana, 22, 539-547. 
Kajwadkar, A.P., & Sharma, L.K. (1983). “On scalar quark leakage in Klein-Gordon equation”. 
Indian J. of pure appl. Physics, 21, 195-196. 
Sharma, L.K., Mehta, S., &Iyer, V.P. (1983). “Solution of the Dirac equation for the general even-
power potential with application to particle spectroscopy” J. of Mathematical Physics, 24, 2521-
2527.  
Sharma, L.K. & Iyer, V.P. (1982). “High energy asymptotic expansion and Regge trajectories for 
the general even power potential in the K-G equation with applications”. J. of Mathematical 
Physics, 23, 1185-1189. 
Sharma, L.K., Choubey, J. & Müller-Kirsten, H.J.W. (1980). “Large coupling expansions for 
energies and Regge trajectories of the general even power potential with applications”. J. of 
Mathematical Physics, 21, 1533-1538. 
Sharma, L.K. Fiase, J.O. (2000). “Meson Spectra: Power law potential in the Dirac equation” 
Paper presented at the 7th conference on Intersections of particle & nuclear physics, May 22-28, 
Quebec City, Canada. Proceedings published by Americal Institute of Physics, CP 549-291. 
Sharma, L.K., Jain, P.K. & Mundembe, V.R., (1999). “Modified two-step potential: Heavy 
Mesons”.  J. of Appl. Science in Southern Africa (JASSA), 4, 70-79. 
Abe, F. et al., (1995). “Observation of Top Quark Production in pp  Collisions with the Collider 
Detector at Fermilab”,  Phys. Rev. Lett. 74, 2626-2631. 
Abachi, S. et al., (1995). “Observation of the Top Quark”,  Phys. Rev. Lett. 74, 2632-2637.  
Ram, B. & Halasa, R. (1979). “Meson spectra with harmonic-oscillator potential in the Klein-
Gordon equation” Phys. Rev. D11, 3467-3469. 
Ram, B. (1978). “On quark leakage through a confining potential”. Nuovo Cim. Lett. Al.  23, 321-
323.                 
Martin, A. (1980). “A FIT of Upsilon and Charmonium Spectra”, Phys. Lett., B93, 338-348. 
Sharma, G.S., &Sharma, L.K. (1984). “Meson spectra with power-law potential in Dirac equation” 
Pramana, 22, 533-537. 
Jena, S.N. (1983). “Fit of Charmonium And Upsilon Spectra by a Common Potential V(0) + A log 
(1+R)”,  Phys. Lett., B123,445. 
Merzbacher, E. (1970), Quantum Mechanics, 2nd edition (John-Wiley, NY). 



Iyer, V.P. &Sharma, L.K. (1982). “Meson spectroscopy for a harmonic oscillator –cum- 
centrifugal potential in the Klein-Gordon equation”. Indian J. Pure & Appl. Physics, 20, 322-324. 


