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Abstract:Effect of loss factor, rotatory inertia and shear effect on sound radiation by 
horizontal beams subject to moving loads at subsonic speeds is analysed. Although the 
contribution of these factors may yield results only a few percentages more accurate and their 
effect is quite profound when dynamic response analysis is undertaken, it may be an 
overestimate for slender bodies. The problem is formulated for Timoshenko beam, Rayleigh 
beam, Shear beam and Bernoulli-Euler beam with complex shear and elastic modulus. Taking 
Fourier transform of the governing equation the non-dimensional sound radiation is obtained 
and compared to analyse the contributions of loss factor, rotatory inertia and shear effect on 
sound radiation. The results show that a Timoshenko beam gives the least sound radiation 
power when compared with other beam types. The magnitude of sound radiation limited to a 
maximum of 4-5 % increases as one moves from the Shear beam to the Rayleigh beam to the 
Bernoulli beam. The effect of structural damping exhibits a relation inversely proportional to 
the vibration levels. The shift of curves due to damping variation is however found to be 
proportional to the change in the loss factor. 

Keywords: Moving Load; Bernoulli-Euler Beam; Rayleigh Beam; Shear Beam; Timoshenko 
Beam; Loss Factor; Heavy fluid-loading; Sound radiation. 

Introduction
A ship at sea or an aircraft in flight vibrate due to surface forces applied by the relative motion of the fluid they are 
traveling in. Larger the magnitude of the moving load, higher the vibration. High vibration levels generate noise or 
cause material failure, thus degrading the structure's performance. In case of a floating airport, a bridge, guideway, 
overhead crane, cableways, rails or roadways the structure is static while being subject to moving loads; unlike the 
case of a ship or an aircraft wherein the structure is moving and the surface force is at rest. May it be a moving 
structure in static fluid; a moving force over a static structure or both the force and the structure moving; the 
resultant effect is vibrations, which cause degradation of the structure. 

Moving loads on structures have been analyzed ever since the first railway bridge was built in the early19th century. 
Over the years, such studies have been the subject of various investigations, and hence an extensive bibliography is 
available. A comprehensive treatment of the subject of vibrations of structures due to moving loads which contains a 
large number of related cases is given by Fryba (1999). Theoretically, the problem of moving load was first tackled 
for a case in which the beam mass was considered small against the mass of a single, constant load. The original 
approximate solution is due to R. Willis et. al. (1851) one of the early experimenters in the field. Since then these 
problems has become more dynamic in character mainly due to the increased vehicle speed and structural flexibility. 
What remains however common in these is the idealization of the structure as a string, a beam or a plate. This is 
done not only due to the frequent occurrences of these structures in several engineering disciplines, but also to 
simplify the mathematical structure of the governing equations compared with a full three-dimensional equation. 
Ever since the Classical Beam Theory was used to construct the Eiffel Tower and the Ferris wheel in the late 19th

century, the Bernoulli-Euler beam theory has become a cornerstone of engineering for use in the analysis of 
structures. By neglecting the terms of shear effect and rotatory inertia, one arrives at the Bernoulli-Euler Beam from 
the Timoshenko beam. The contribution of these terms changes the accuracy of the results by a very small 
percentage; however, for dynamic analysis these components cannot be neglected. 

The phenomenon of acoustics of vibrating structures caught the attention of Lord Rayleigh (1896). Techniques for 
dealing with fully coupled motions of elastic plates and shells immersed in air or water were simply not available in 
Rayleigh’s time, but have become available in the past three decades or so. A standard reference on the analytical 
modeling is the book of Junger and Feit (1986). Early investigations of sound radiation from a force excited, elastic, 



fluid-loaded plate by Gutin (1965), Maidanik and Kerwin (1967) and Feit (1967) were primarily for the far field 
pressure and power radiated into the acoustic medium. Nayak (1970), using the Fourier integral representation of the 
solution evaluated the velocity response numerically to determine the drive line admittance for a line-driven plate. 
Crighton in a series of papers Crighton (1972, 1977, 1979 and 1983) analyzed both the near-and far field responses 
of locally excited plates. Crighton's results although probably the most complete to date in this field, are somewhat 
difficult to visualize due to the complexity of the problem and that they have not been displayed in a graphical form. 

The sound radiation from a moving force excited, elastic structure is a relatively newer area of interest. Keltie and 
Peng (1989) investigated the sound radiation from a fluid-loaded Timoshenko beam subject to a moving harmonic 
line force. Results show that for beams under light fluid loading, the coincidence sound radiation peak for a 
stationary force gets split into two coincidence peaks due to the effects of the Doppler shift, while for beams under 
heavy fluid loading there are no pronounced sound radiation peaks. Following the study of Keltie, Cheng and Chui 
(1999) formulated the vibration response of periodically simply supported beam on the whole structure in wave-
number domain through Fourier transform. This problem was an advance on traditional substructure methods. For 
an air-loaded beam subjected to a stationary line force, they showed that the radiated sound power exhibited peaks at 
certain wave-number ratios. The wave-number ratios at which radiation peaks occur nearly coincide with the lower 
bounding wave-number ratios of the odd number of propagation zones. However, Cheng's formulation did not 
include the presence of numerous wave-number components induced from the elastic supports and is subject to the 
restriction that the external force is located on one of the elastic supports. Cheng et al. (2000, 2001) introduced a 
“wave-number harmonic series” to discuss the vibro-acoustic response of a fluid-loaded beam on periodic elastic 
supports subjected to a moving load. Results show that the response of a beam on an elastic foundation can be 
approximated using a periodically, elastically supported beam when the support spacing is small compared with the 
flexural wavelength. For such beams when the force is stationary a single radiation peak occurs which splits into two 
peaks due to Doppler shift when the force becomes traveling. 

The above mentioned studies of elastic beams excited by a moving force, have considered a Timoshenko beam with 
complex shear modulus and elastic modulus to cater for structural damping and dynamic response. However for 
long slender beams such as a floating airport, the Timoshenko beam may be an overkill. Similarly, assuming the 
presence of a loss factor, introduces a natural structural damping which needs to be ignored as there is no resonance 
mechanism for these floating structures. It is hence considered essential that the effect of the shear deformation and 
rotatory inertia on sound radiation from beams be studied to understand the best model for analysis. One needs to 
understand the effect of loss factor on sound radiation for these structures before disregarding their contribution. It is 
in this regard that the present study has been undertaken which provides a simple yet effective methodology in 
calculating the component of acoustic signature generated due to the relative motion (modeled as a moving load) of 
the ship (modeled as a beam) and the water when the ship is underway. 

In this paper, damping characterized by the loss factor, often denoted by , has been considered using a “constant 
loss factor” model. Including complex shear modulus and Elastic modulus (hence the loss factor); the problem has 
been formulated for the four beam types following the approach described by Keltie. Using Fourier transformation 
the total sound power is calculated and results presented at a range of frequencies both below and above coincidence 
for heavy fluid-loaded elastic beams. The acoustic power due to loss factor variation is additionally studied for a 
heavy fluid-loaded Timoshenko beam. 

Formulation 
The motion of an infinite beam excited by a force of length 2L moving at a subsonic speed V  is formulated. The 
problem is considered in two-dimensional Cartesian co-ordinate system with x -axis being in the horizontal 
direction and y -axis in the vertically upward positive direction, as seen in Figure 1. The beam occupies the plane

0y . The space y>0 is filled with an acoustic medium (water, air etc). The moving force may be assumed to be a 

uniform distributed line force given by ( , )f x t 0

2
f
L

[ ( ) ( )] j tH x Vt L H x Vt L e  or a point force 

given by 0( , ) ( )j tf x t f e x Vt



Figure 1: Schematic representation of the problem geometry 

The vibration equation for the elastic beam, including rotational inertia and transverse shear effects, is given by 
Junger and Feit (1986) as 
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From this equation follow three special cases: 

(a) Rayleigh beam: If the effect of rotary inertia is considered and the effect of shear is neglected, the so called 
Rayleigh beam model results and equation (1a) reduces to 
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(b) Shear Beam: If the effect of rotatory inertia is neglected and effect of shear on the dynamic deflection of beam is 
considered, equation (1a) reduces to  
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(c) Bernoulli-Euler beam: If we neglect the effect of both shear and rotatory inertia we obtain the classical 
Bernoulli-Euler beam model.  
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The pressure distribution induced by the vibrating beam in the acoustic medium is denoted by ( , , )p x y t  and 
satisfies the wave equation in two-dimensional space, give by 
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The boundary condition at 0y  is given by  
2
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By applying the spatial Fourier transformation () () i xFT e dx , with  as the wave number variable, the force 

function for a harmonic line force in wave number domain may be written as 
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and for a point force as  
( ) ( )

0( , ) ( )j V t j V tf t f e F e      (4a)(ii)  
the transformed displacement as 

( )( , ) ( ) j V tU t U e (4b) 
 and the transformed pressure as  
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 Upon substitution of equation (4a), (4b) and (4c) in the relevant beam equation and the acoustic equation, we get  
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where the acoustic impedance operator ( aZ ) for the Timoshenko beam, Rayleigh beam, Shear beam and Bernoulli-
Euler beam is given by 
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the beam impedance operator ( mZ ) as 
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and yK  is given by  
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 We shall now discuss the methodology of finding the total acoustic power. 



Total Acoustic Power
 The time averaged sound intensity is given by Morse and Ingrad (1986) as  
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In order to find the total acoustic power ( ), the surface acoustic intensity distribution needs to be integrated over 
the infinite length of the beam as  

*1 [ ( , 0, ) ( , )]
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Upon substituting the sound pressure (6) and calculating the surface velocity using (5), the sound power radiated per 
unit width of the beam can be simplified as 
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Limiting the study to subsonic motion of the moving load, the limits within which yK  is real is given by 
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1 21 1

K K
M M

This allows us to rewrite the expression for the sound power as  
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This completes the formulation of an expression for the total acoustic power for varying beam types subjected to a 
moving load. 

Non-Dimensionalization
In order to present the numerical results, the concept of non-dimensional parameters defined in Keltie and Peng 
(1989) is used. Hence the dimensionless radiated sound power per unit width for a uniform distributed line force is 
given as 
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(b) Rayleigh beam:
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Analysis
The investigation of the problem is covered in two parts: 
(a)  Effect of the shear effect and rotatory inertia on the total radiated sound power by different beam types. 
(b)  Effect of the loss factor ( ) on the total radiated sound power. 

In order to undertake the required investigation equation (13) needs to be numerically evaluated for the case of a 
steel beam immersed in water. The properties of the beam model analyzed are 10 220 10 /E N m ,

37800 /v kg m , 22.54 10h m , 0.3 , 2 0.85 , 0 1481 /C m s  and 0 1000 /kg m .

The external force strength ( 0f ) is assumed to be of unit magnitude. By varying the values of parameters M  and

0K L , the sound power is computed and then plotted against the wave number ratio ( ) or non-dimensional 
frequency. The value of  is taken as 0.01 as found in the literature Ungar (1988). However to study the effect of 
the loss factor, the value of  is varied over 0.9, 0.1, 0.01, 0.001, 0. The effect of  is discussed using a 

Timoshenko beam. The sound power has been calculated for a variety of combinations of M  and 0K L  for the 



variable beam type and variable loss factor in the frequency range 0.01 2.2 . The results so obtained are 
shown. Figures 2 to 4 show the effect of various beam types while Figures 9 and 10 show the effect of various loss 
factors. For variable beam type, calculations have been done for all the four beams and combined results plotted. For 
variable loss factor however, these calculations have been undertaken for Timoshenko beam. All calculations have 
been undertaken using MATLAB. 

Discussion
In the Figures shown below, one can see four distinct frequency ranges: the very low frequency region ( 0.1) ;
the low frequency region (0.1 1.0) ; the frequency region near coincidence ( ~ 1.0) ; and the frequency 
region above coincidence ( 1.0)  In the low frequency region and in the region above coincidence frequency, 
the sound powers radiated show no discernible difference. It is the low frequency region and the region near 
coincidence which is hence of concern to us and needs to be discussed. 

Figure 2: Relative sound power v/s wave-number ratio for various beam types 

Figure 3: Relative sound power v/s wave-number ratio for various beam types 



Figure 4: Relative sound power v/s wave-number ratio for various beam types 

Various Beam Type
It is interesting to note that there are no peaks in the sound power curves. The essential lack of peaks for a dense 
medium like water is due to the proportion of the structural energy converted to acoustic energy. This is larger for 
dense media, leading to the draining of the radiation energy faster from the structure thus disallowing peak 
formation. This results in larger effective damping. 

Figure 2a and 3a for acoustic length 0.1 and 2  respectively are for Mach number, 0M , which indicates a 
condition of static load. As expected, the sound radiation from the Timoshenko beam is the least while that of the 
Bernoulli-Euler beam is a maximum. The effect of Shear beam is greater than Rayleigh beam though within the 
bounds of Timoshenko Beam and Bernoulli-Euler beam. This effect is as expected view terms of contribution 

involved in the beams. One notices that for the shear beam, the contributing element is 
4
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added to the Bernoulli-Euler beam on the LHS and 
2

2 2

EI
Gh x

 on the RHS. With the values of 2  limited to 

0.85 for beams, the contribution of the term shall be greater than 1 thus reducing the net magnitude of the beam 
impedance mZ  while increasing the acoustic impedance aZ . This results in a reduced sound output when compared 
to the sound produced by a Bernoulli-Euler beam. On the other hand for the Rayleigh beam, the contribution is by 

the term 
4
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v

u x tI
x t

 which reduces the structural impedance mZ . The Rayleigh beam has no effect on the 

acoustic impedance but since the magnitude of the lowering term on mZ  is large, the net acoustic output is lesser 
than both the Bernoulli-Euler and the Shear beam. This effect is reversed for frequency regime above coincidence. If 

we see equation (14), 2
FZW

D
, while 2D D . For higher values of , for the shear beam, FZ  increases, 

while D  reduces because of increase in 2D . Thus W  reduces. Similarly for the Rayleigh beam FZ  remains 

unchanged while D  reduces due to increase of 2D . However 2 2SE RED D  and FSE FREZ Z thus SE REW W .

BE RED D  since 2 2BE RED D  and 1FBE FREZ Z  thus BE REW W .

With the load moving i.e M > 0, and acoustic length being the same, an overall increase in the sound power is 
observed. Mathematically, as M  increases  increases, thus increasing 2D  which leads to reduced D  and hence 



increasedW . Physically this is as expected, since with increased speed, the resulting sound is known to increase. 
However this trend is seen to be reversed for increased frequency the logic being the same as discussed for 0M .
It is clear that the increased acoustic length ( 0K L ) reduces the sound power level over the entire frequency range. 
This can be attributed to the fact that the total applied force strength is kept constant. 

Figure 5: % Difference in Relative sound power for beams; 0K L n ; 0M

Figure 6: % Difference in Relative sound power for beams; 0 (2 1)
2

K L n ; 0M

Figure 7: % Difference in Relative sound power for beams; 0K L n , various $M 



Figure 8: % Difference in Relative sound power for beams; 0 (2 1)
2

K L n , varying M

In order to analyze the nature of the change in power of various beam types, we reorganize the results as a 
percentage difference. Since the Bernoulli-Euler beam gives maximum values, we use it as a base value and 
differences with respect to the values of sound power for Bernoulli-Euler beam are plotted for various beam types. It 
may be noticed that we have two varying parameters namely M  and 0K L . We shall try and understand the 

contribution of each while varying the other variable. It is interesting to note that if incase 0K L  is an integer 

multiple of , then the trend of the difference of the total sound power is different than that observed for 0K L
being otherwise. The variations are observed for the beam types are shown in Figures 5 and 6 for Rayleigh beam, 
Shear beam and Timoshenko beam respectively. It is observed that the difference of sound power commences after 
coincidence if 0K L  is an integral multiple of  and at half of coincidence when it is otherwise. The variation of 

the percentage difference is consistence in trend. For 0K L  being an integral multiple of , ( 1)n  half modes are 

visible, where n  is the integral multiple of . However n  number of half modes is seen when 0K L  is a non 

integral multiple of . The reasoning for this is that the beam responds preferentially at BK , the free bending 
wave-number, which is the spatial scale of the propagating or the energy bearing portion of the beam's response at 
frequency . Height of the peak is controlled by the damping present in the structure. Physically, the amount of 
power radiated is determined by how much energy is available in the force spectrum at the structural / acoustic 

response wave-number. When this wave number corresponds to an integral multiple of
n
L

, there is no energy 

available in the free spectrum for the conversion to acoustic radiation. These wave-numbers of vanishing energy 
may be related to wavelength as 

2 2n L
L n

 . 

The effect of varying M  displays the Doppler shift of the difference curves as the speed increases. The overall 
pattern that emerges when 0K L  is an integral multiple of  and when the value of 0K L  is not an integral 
multiple of  is worth noticing. Special attention may be given to the packing of the values at the critical frequency 
and the convergence of the data at high wave number ratios.  



Figure 9: Relative sound power v/s wave-number ratio for varying 

Figure 10: Relative sound power v/s wave-number ratio for varying 

Loss Factor 
Increased vibrational levels due to reduced damping (hence reduced loss factor) lead directly to increased sound 
radiation as seen in the Figures 9 and 10. It is interesting to note that the curves appear to have the same basic shape. 
As the structural damping decreases, the amount of steady-state vibrational energy in the beam increases. What is 
most interesting is that the curves shift up by an amount which is directly proportional to the change in the loss 
factor.  Near the coincidence frequency, if the structural loss is large enough ( ~ 0.1) , the damping provided by 
the material exceeds the damping provided by the fluid loading and there is significant difference between the two 
power curves. If the loss factor is small, then the damping effects reduce and the sound power level significantly 
increases thus showing that the radiation losses cannot be neglected in this frequency region. 

Conclusion 
Effect of loss factor, shear effect and rotatory inertia on radiated sound power from beams subjected to moving loads 
has been investigated. It is concluded that a Timoshenko beam gives the least sound radiation power when compared 
to the other beam types. The correction for shear effect and rotatory inertia yield results within 4-5 \% more accurate 
than classical beam theory. The nature of the curves with varying 0K L  is dependent on 0K L  being an integral 



multiple of  or otherwise. For varying M , the Doppler shift of the curves is observed for increasing M . The 
overall pattern that emerges when 0K L  is an integral multiple of  and when the value of 0K L  is not an integral 
multiple of  is worth noticing. Special attention may be given to the packing of the values at the critical frequency 
and the convergence of the data at high wave number ratios. It is observed that as the structural damping decreases, 
vibrational levels increase thus causing an increase in the sound vibrations. The shift of the curves is however found 
to be proportional to the change in the loss factor. 
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APPENDIX: LIST OF SYMBOLS 
     Wave number variable 

0

B

K
K

   Wave number ratio 

    Poisson's ratio  

v     Mass density of the material  

0     Mass density of the acoustic medium 
2

2

12
   Cross sectional shape factor or the shear correction factor  

    Loss factor  
    Non dimensional wave number variable 

0
0

012
L

v

C
C

  Fluid loading parameter 

( )x Vt    Delta function 
    Total acoustic power 

h     Height of the beam  
( , 0, )p x y t    Acoustic pressure acting on the beam's surface 
( , )u x t     Transverse displacement of the beam  

0f Strength of external force per unit width 

0C     Sound speed in the acoustic medium 

L
v

EC Longitudinal wave speed 

(1 )E E j    Complex elastic modulus 
E     Elastic modulus 

2(1 )
EG    Complex shear modulus  

( )H x     Heavyside step function 
3

12
hI    The cross sectional moment of inertia per unit width 

I     Time averaged sound intensity 

0

( )VM
C

   Mach number 

0
0

( )K
C

   Acoustic wave number 

12
4

2

12[ ]v
BK

Eh
  Free bending wave number 

P     Sound pressure on the beam surface 
*U     Beam surface velocity of conjugation 



U (
( )dU

dt
)( ( ) ( )j V U )

V     Subsonic speed of moving force of length 2L 

aZ     Acoustic impedance operator 

mZ     Beam impedance operator 
2

2
0 0

4 ( )vhW
f

  Power per unit width 

Other quantities and scaled variables are defined as they occur in the text. 


